You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-**Mantissa Bits:** Suppose they represent a fractional part like \\( .101000... \\).
98
98
99
99
Then the number would be:
100
100
\[
101
101
+1.101000 \times 2^3
102
102
\]
103
-
Convert \( 1.101000 \) from binary to decimal and then multiply by \( 2^3 \) to get the final value.
103
+
Convert \\( 1.101000 \\) from binary to decimal and then multiply by \\( 2^3 \\) to get the final value.
104
104
105
105
**Practice Exercise:**
106
106
107
-
- Given the following breakdown for a 32-bit floating-point number: sign = 0, exponent = \( 10000001_2 \) (decimal 129), and mantissa = \( 01000000000000000000000 \), compute the decimal value.
107
+
- Given the following breakdown for a 32-bit floating-point number: sign = 0, exponent = \\( 10000001_2 \\) (decimal 129), and mantissa = \\( 01000000000000000000000 \\), compute the decimal value.
108
108
109
109
---
110
110
@@ -113,9 +113,9 @@ Convert \( 1.101000 \) from binary to decimal and then multiply by \( 2^3 \) to
113
113
### 2.1 Basic Boolean Operations
114
114
115
115
**Key Operations:**
116
-
-**AND (·):**\( A \land B \) is true only if both \( A \) and \( B \) are true.
117
-
-**OR (+):**\( A \lor B \) is true if at least one of \( A \) or \( B \) is true.
118
-
-**NOT (’ or \(\neg\)):**\( \neg A \) inverts the truth value of \( A \).
116
+
-**AND (·):**\\( A \land B \\) is true only if both \\( A \\) and \\( B \\) are true.
117
+
-**OR (+):**\\( A \lor B \\) is true if at least one of \\( A \\) or \\( B \\) is true.
118
+
-**NOT (’ or \\(\neg\\)):**\\( \neg A \\) inverts the truth value of \\( A \\).
119
119
120
120
**Truth Tables:**
121
121
@@ -146,7 +146,7 @@ Convert \( 1.101000 \) from binary to decimal and then multiply by \( 2^3 \) to
146
146
147
147
**Practice Exercise:**
148
148
149
-
- Given the Boolean expression \( \neg(A \land B) \), use a truth table to show it is equivalent to \( \neg A \lor \neg B \) (De Morgan’s Law).
149
+
- Given the Boolean expression \\( \neg(A \land B) \\), use a truth table to show it is equivalent to \\( \neg A \lor \neg B \\) (De Morgan’s Law).
150
150
151
151
---
152
152
@@ -155,24 +155,24 @@ Convert \( 1.101000 \) from binary to decimal and then multiply by \( 2^3 \) to
155
155
**Important Laws:**
156
156
157
157
-**Commutative Law:**
158
-
-\( A \lor B = B \lor A \)
159
-
-\( A \land B = B \land A \)
158
+
-\\( A \lor B = B \lor A \\)
159
+
-\\( A \land B = B \land A \\)
160
160
161
161
-**Associative Law:**
162
-
-\( (A \lor B) \lor C = A \lor (B \lor C) \)
163
-
-\( (A \land B) \land C = A \land (B \land C) \)
162
+
-\\( (A \lor B) \lor C = A \lor (B \lor C) \\)
163
+
-\\( (A \land B) \land C = A \land (B \land C) \\)
164
164
165
165
-**Distributive Law:**
166
-
-\( A \land (B \lor C) = (A \land B) \lor (A \land C) \)
167
-
-\( A \lor (B \land C) = (A \lor B) \land (A \lor C) \)
166
+
-\\( A \land (B \lor C) = (A \land B) \lor (A \land C) \\)
167
+
-\\( A \lor (B \land C) = (A \lor B) \land (A \lor C) \\)
168
168
169
169
-**De Morgan’s Laws:**
170
-
-\( \neg (A \land B) = \neg A \lor \neg B \)
171
-
-\( \neg (A \lor B) = \neg A \land \neg B \)
170
+
-\\( \neg (A \land B) = \neg A \lor \neg B \\)
171
+
-\\( \neg (A \lor B) = \neg A \land \neg B \\)
172
172
173
173
**Practice Exercise:**
174
174
175
-
- Simplify the expression \( A \lor (\neg A \land B) \) using Boolean algebra laws.
175
+
- Simplify the expression \\( A \lor (\neg A \land B) \\) using Boolean algebra laws.
176
176
177
177
---
178
178
@@ -184,17 +184,17 @@ Convert \( 1.101000 \) from binary to decimal and then multiply by \( 2^3 \) to
184
184
185
185
-**Addition:**
186
186
- Follows similar rules to decimal addition but with base 2.
187
-
-**Example:**\( 1011_2 + 1101_2 \)
187
+
-**Example:**\\( 1011_2 + 1101_2 \\)
188
188
- Align and add bit by bit, carrying over when the sum exceeds 1.
189
189
190
190
-**Subtraction:**
191
191
- Can be performed by borrowing, or by using the two's complement method.
192
192
-**Two's Complement:** To represent negative numbers, invert the bits and add 1.
193
-
-**Example:** To subtract \( 1101_2 \) from \( 1011_2 \), first find the two's complement of \( 1101_2 \) then add.
193
+
-**Example:** To subtract \\( 1101_2 \\) from \\( 1011_2 \\), first find the two's complement of \\( 1101_2 \\) then add.
194
194
195
195
**Practice Exercise:**
196
196
197
-
- Perform the binary subtraction \( 10100_2 - 01101_2 \) using two’s complement.
197
+
- Perform the binary subtraction \\( 10100_2 - 01101_2 \\) using two’s complement.
198
198
199
199
---
200
200
@@ -207,7 +207,7 @@ Convert \( 1.101000 \) from binary to decimal and then multiply by \( 2^3 \) to
0 commit comments