|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "# Import libraries\n", |
| 10 | + "import pandas as pd\n", |
| 11 | + "import numpy as np" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": null, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "# Load Excel File\n", |
| 21 | + "filename = 'data/car_financing.xlsx'\n", |
| 22 | + "df = pd.read_excel(filename)" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": null, |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "## Filtering \n", |
| 32 | + "car_filter = df['car_type']=='Toyota Sienna'\n", |
| 33 | + "interest_filter = df['interest_rate']==0.0702\n", |
| 34 | + "df = df.loc[car_filter & interest_filter, :]" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": null, |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "# Approach 1 dictionary substitution using rename method\n", |
| 44 | + "df = df.rename(columns={'Starting Balance': 'starting_balance',\n", |
| 45 | + " 'Interest Paid': 'interest_paid', \n", |
| 46 | + " 'Principal Paid': 'principal_paid',\n", |
| 47 | + " 'New Balance': 'new_balance'})" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "# Approach 2 list replacement\n", |
| 57 | + "# Only changing Month -> month, but we need to list the rest of the columns\n", |
| 58 | + "df.columns = ['month',\n", |
| 59 | + " 'starting_balance',\n", |
| 60 | + " 'Repayment',\n", |
| 61 | + " 'interest_paid',\n", |
| 62 | + " 'principal_paid',\n", |
| 63 | + " 'new_balance',\n", |
| 64 | + " 'term',\n", |
| 65 | + " 'interest_rate',\n", |
| 66 | + " 'car_type']" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": null, |
| 72 | + "metadata": {}, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "# Approach 1\n", |
| 76 | + "# This approach allows you to drop multiple columns at a time \n", |
| 77 | + "df = df.drop(columns=['term'])" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": null, |
| 83 | + "metadata": {}, |
| 84 | + "outputs": [], |
| 85 | + "source": [ |
| 86 | + "# Approach 2 use the del command\n", |
| 87 | + "del df['Repayment']" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "df.shape" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "markdown", |
| 101 | + "metadata": {}, |
| 102 | + "source": [ |
| 103 | + "## Aggregate Methods\n", |
| 104 | + "It is often a good idea to compute summary statistics." |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "markdown", |
| 109 | + "metadata": {}, |
| 110 | + "source": [ |
| 111 | + "Aggregate Method | Description\n", |
| 112 | + "--- | --- \n", |
| 113 | + "sum | sum of values\n", |
| 114 | + "cumsum | cumulative sum\n", |
| 115 | + "mean | mean of values\n", |
| 116 | + "median | arithmetic median of values\n", |
| 117 | + "min | minimum\n", |
| 118 | + "max | maximum\n", |
| 119 | + "mode | mode\n", |
| 120 | + "std | unbiased standard deviation\n", |
| 121 | + "var | unbiased variance\n", |
| 122 | + "quantile | compute rank-based statistics of elements" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "df.head()" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "code", |
| 136 | + "execution_count": null, |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [], |
| 139 | + "source": [ |
| 140 | + "# sum the values in a column\n", |
| 141 | + "# total amount of interest paid over the course of the loan\n", |
| 142 | + "df['interest_paid'].sum()" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": null, |
| 148 | + "metadata": {}, |
| 149 | + "outputs": [], |
| 150 | + "source": [ |
| 151 | + "# sum all the values across all columns\n", |
| 152 | + "df.sum()" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": null, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [], |
| 160 | + "source": [ |
| 161 | + "'Toyota Sienna' + 'Toyota Sienna'" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "# Notice that by default it seems like the sum function ignores missing values. \n", |
| 171 | + "help(df['interest_paid'].sum)" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "code", |
| 176 | + "execution_count": null, |
| 177 | + "metadata": {}, |
| 178 | + "outputs": [], |
| 179 | + "source": [ |
| 180 | + "# The info method gives the column datatypes + number of non-null values\n", |
| 181 | + "# Notice that we seem to have 60 non-null values for all but the Interest Paid column. \n", |
| 182 | + "df.info()" |
| 183 | + ] |
| 184 | + } |
| 185 | + ], |
| 186 | + "metadata": { |
| 187 | + "anaconda-cloud": {}, |
| 188 | + "kernelspec": { |
| 189 | + "display_name": "Python 3 (ipykernel)", |
| 190 | + "language": "python", |
| 191 | + "name": "python3" |
| 192 | + }, |
| 193 | + "language_info": { |
| 194 | + "codemirror_mode": { |
| 195 | + "name": "ipython", |
| 196 | + "version": 3 |
| 197 | + }, |
| 198 | + "file_extension": ".py", |
| 199 | + "mimetype": "text/x-python", |
| 200 | + "name": "python", |
| 201 | + "nbconvert_exporter": "python", |
| 202 | + "pygments_lexer": "ipython3", |
| 203 | + "version": "3.9.7" |
| 204 | + } |
| 205 | + }, |
| 206 | + "nbformat": 4, |
| 207 | + "nbformat_minor": 1 |
| 208 | +} |
0 commit comments