-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodifiedFLANNAlgoWithTemplateMacthing.py
181 lines (121 loc) · 5.18 KB
/
modifiedFLANNAlgoWithTemplateMacthing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 18 14:26:30 2019
@author: MAGESHWARAN
"""
import os
import json
import cv2
import numpy as np
from tqdm import tqdm
def ModifiedFLANN(img1, img2, useTemplateMacthing=True):
"""
Runs FLANN Algoritm with SIFT Descriptor to find association b/w images
Input:
img1 : Crop Image (numpy array)
img2 : Real Image (numpy array)
useTemplateMacthing : (bool) whether to use Template Matching or not
Returns:
flannMatch : True if Only FLANN matching is used
crop_border : (np.array) Bounding box of cropped image if associated.
None if Not associated.
"""
# parameters for FLANN Macthing
mini_match_count = 10
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=10)
# creating object for SIFT descriptor
sift = cv2.xfeatures2d.SIFT_create()
# detect keypoints and get descriptions on crop and originalimage
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
orgBorder = None
flannMatch = True
# SIFT fails on solid color images, hence template matching is used here
if (des1 is None) or (des2 is None):
flannMatch = False
if useTemplateMacthing:
if (img2.shape[0] > img1.shape[0]) and (img2[1].shape[1] > img1.shape[1]):
res = cv2.matchTemplate(img2, img1, cv2.TM_CCOEFF)
_, _, min_loc, max_loc = cv2.minMaxLoc(res)
h, w, _ = img1.shape
pts = [int(min_loc[0]), int(min_loc[0]) + w,
int(max_loc[0]), int(max_loc[1])]
return flannMatch, pts
return flannMatch, orgBorder
# Use FLANN with default parameters
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
good_matches = []
# Keep only features with good matches based on DMatch.distance
for match1, match2 in matches:
if match1.distance < (0.7 * match2.distance):
good_matches.append((match1))
if len(good_matches) > mini_match_count:
cropImg = []
orgImg = []
# Grab the coordinates of keypoints
for m in good_matches:
cropImg.append(kp1[m.queryIdx].pt)
orgImg.append(kp2[m.trainIdx].pt)
cropImg, orgImg = np.float32((cropImg, orgImg))
# use Homography to compute geometric transformation
H, _ = cv2.findHomography(cropImg, orgImg, cv2.RANSAC, 3.0)
if H is None:
return flannMatch, orgBorder
h, w, _ = img1.shape
cropBorder = np.float32([[[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]])
# Detect corners based on current view
orgBorder = cv2.perspectiveTransform(cropBorder, H)
return flannMatch, orgBorder
def findMinMax(border):
"""
Detect min and max values of bounding box
Input:
border : (np.array) Bounding box of cropped image
Returns:
List of min and max values of x and y
"""
x, y = np.absolute(np.transpose(border)[0]), np.absolute(np.transpose(border)[1])
x1, x2 = int(x.min()), int(x.max())
y1, y2 = int(y.min()), int(y.max())
return [x1, y1, x2, y2]
if __name__ == "__main__":
base_dir = os.getcwd()
data_folder = os.path.join(base_dir, "Dataset")
images_folder = os.path.join(data_folder, "Images")
crops_folder = os.path.join(data_folder, "Crops")
sample_testset = os.path.join(data_folder, "sample_testset")
model_sample_result = os.path.join(sample_testset, "sample_result.json")
sample_images = os.path.join(sample_testset, "images")
sample_crops = os.path.join(sample_testset, "crops")
completeTracker = {}
noAssociationCropImages = os.listdir(sample_crops)
noAssociationImages = os.listdir(sample_images)
for imagefile in tqdm(os.listdir(sample_images)):
img = cv2.imread(os.path.join(sample_images, imagefile))
imageTracker = []
for cropfile in os.listdir(sample_crops):
crop_img = cv2.imread(os.path.join(sample_crops,
cropfile))
flannMatch, crop_border = ModifiedFLANN(crop_img, img)
if flannMatch:
if crop_border is not None:
pts = findMinMax(crop_border[0])
imageTracker.append((cropfile.replace(".jpg", ""), pts))
if cropfile in noAssociationCropImages:
noAssociationCropImages.remove(cropfile)
else:
if crop_border is not None:
imageTracker.append((cropfile.replace(".jpg", ""), crop_border))
if cropfile in noAssociationCropImages:
noAssociationCropImages.remove(cropfile)
completeTracker[imagefile.replace(".jpg", "")] = imageTracker
NA_Crops = []
for crop in noAssociationCropImages:
NA_Crops.append([crop.replace(".jpg", ""), []])
completeTracker["NA"] = NA_Crops
with open(model_sample_result, "w") as f:
json.dump(completeTracker, f)
print("Output Json File is generated")