generated from fspoettel/advent-of-code-rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path16.rs
196 lines (158 loc) · 5.26 KB
/
16.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
advent_of_code::solution!(16);
use regex::Regex;
use std::collections::HashMap;
use std::collections::HashSet;
use std::collections::VecDeque;
type ValveName = [char; 2];
type ValveArray = HashMap<ValveName, Valve>;
struct Valve {
name: ValveName,
flow_rate: u32,
tunnels: Vec<ValveName>,
}
fn parse_data(input: &str) -> ValveArray {
let re_str: &str = r"Valve ([A-Z][A-Z]) has flow rate=(\d+); tunnels? leads? to valves? ((?:[A-Z][A-Z](?:, )?)+)$";
let re = Regex::new(re_str).unwrap();
fn str_to_valve_name(s: &str) -> ValveName {
let mut iter = s.chars();
[iter.next().unwrap(), iter.next().unwrap()]
}
input
.lines()
.map(|x| re.captures(x).unwrap().extract())
.map(|(_, [name, flow_rate, tunnel_names])| Valve {
name: str_to_valve_name(name),
flow_rate: flow_rate.parse().unwrap(),
tunnels: tunnel_names.split(", ").map(str_to_valve_name).collect(),
})
.map(|v| (v.name, v))
.collect()
}
fn bfs(data: &ValveArray, start_node_name: ValveName, end_node_name: ValveName) -> Option<u32> {
let mut queue = VecDeque::new();
let mut visited = HashSet::new();
queue.push_back((start_node_name, 0));
visited.insert(start_node_name);
while let Some((node_name, time)) = queue.pop_front() {
if node_name == end_node_name {
return Some(time);
}
for neighbor_name in data[&node_name].tunnels.iter() {
if !visited.contains(neighbor_name) {
queue.push_back((*neighbor_name, time + 1));
visited.insert(*neighbor_name);
}
}
}
None
}
struct State {
time: u32,
location: ValveName,
pressure_released: u32,
opened_valves: HashSet<ValveName>,
}
fn find_all_final_states<F>(init_state: State, next_states_f: F) -> Vec<State>
where
F: Fn(&State) -> Vec<State>,
{
let mut candidates: Vec<State> = vec![];
// TODO: dejansko ne znam napisat rekurzije za to v rustu...
let mut queue = vec![init_state];
while let Some(state) = queue.pop() {
queue.extend(next_states_f(&state));
candidates.push(state);
}
candidates
}
fn get_next_states(
data: &ValveArray,
state: &State,
valve_paths: &HashMap<ValveName, Vec<(ValveName, u32)>>,
max_time: u32,
) -> Vec<State> {
let mut result = Vec::with_capacity(valve_paths[&state.location].len());
for valve_path in &valve_paths[&state.location] {
if state.opened_valves.contains(&valve_path.0) {
continue;
}
let new_time = state.time + valve_path.1;
if new_time > max_time {
continue;
}
let new_pressure_released =
state.pressure_released + (max_time - new_time) * data[&valve_path.0].flow_rate;
let mut new_opened_valves = HashSet::with_capacity(state.opened_valves.len() + 1);
new_opened_valves.extend(state.opened_valves.iter());
new_opened_valves.insert(valve_path.0);
result.push(State {
time: state.time + valve_path.1,
location: valve_path.0,
pressure_released: new_pressure_released,
opened_valves: new_opened_valves,
});
}
result
}
fn part_x<const T: u32>(data: &ValveArray) -> Vec<State> {
let mut valve_paths: HashMap<ValveName, Vec<(ValveName, u32)>> = HashMap::new();
for (i, v1) in data.values().enumerate() {
for (j, v2) in data.values().enumerate() {
if i != j && v2.flow_rate > 0 {
let p = valve_paths.entry(v1.name).or_default();
p.push((v2.name, bfs(data, v1.name, v2.name).unwrap() + 1));
}
}
}
let init_state = State {
time: 0,
location: ['A', 'A'],
pressure_released: 0,
opened_valves: HashSet::new(),
};
find_all_final_states(init_state, |state| {
get_next_states(data, state, &valve_paths, T)
})
}
pub fn part_one(input: &str) -> Option<u32> {
let data = parse_data(input);
let mut all_final_states = part_x::<30>(&data);
all_final_states.sort_unstable_by_key(|x| x.pressure_released);
let result = all_final_states
.iter()
.rev()
.map(|x| x.pressure_released)
.next();
result
}
pub fn part_two(input: &str) -> Option<u32> {
let data = parse_data(input);
let mut all_final_states = part_x::<26>(&data);
all_final_states.sort_unstable_by_key(|x| x.pressure_released);
let mut result = 0;
for s1 in all_final_states.iter().rev() {
for s2 in all_final_states.iter().rev() {
if result >= s1.pressure_released + s2.pressure_released {
break;
}
if s1.opened_valves.is_disjoint(&s2.opened_valves) {
result = u32::max(result, s1.pressure_released + s2.pressure_released);
}
}
}
Some(result)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_part_one() {
let result = part_one(&advent_of_code::template::read_file("examples", DAY));
assert_eq!(result, Some(1651));
}
#[test]
fn test_part_two() {
let result = part_two(&advent_of_code::template::read_file("examples", DAY));
assert_eq!(result, Some(1707));
}
}