Skip to content

Commit d4ec7a6

Browse files
Tests improvements (#636)
* increase line length to 100 * generalize tests * test aspect * added conftest.py * assert numpy equal dask cupy case * test classify * curvature to return float32 * test curvature * test dtype of output * classify to return float32 * set verify_dtype to False as default * test focal * test hillshade * aspect, classify, curvature: verify dtype of output array * test multispectral * linting * added rtol as a param * test pathfinding * allocation: return dtype of float32 * test proximity * flake8 * test slope * test terrain * test viewshed * test zonal * change as requested * Fix cupy and rtxpy tests Co-authored-by: Ian Thomas <[email protected]>
1 parent 4df552c commit d4ec7a6

19 files changed

+1402
-1587
lines changed

benchmarks/asv.conf.json

+1-1
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@
7373
"matrix": {
7474
"pyct": [],
7575
// Optional for cupy support; use correct cuda version.
76-
//"cupy-cuda101": [],
76+
//"cupy-cuda113": [],
7777
// Optional for ray-tracing support, need cupy too.
7878
//"rtxpy": [],
7979
// Optional for polygonize.

xrspatial/classify.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -243,7 +243,7 @@ def reclassify(agg: xr.DataArray,
243243
>>> agg_da = xr.DataArray(data_da, name='agg_da')
244244
>>> print(agg_da)
245245
<xarray.DataArray 'agg_da' (dim_0: 4, dim_1: 5)>
246-
dask.array<array, shape=(4, 5), dtype=float64, chunksize=(3, 3), chunktype=numpy.ndarray>
246+
dask.array<array, shape=(4, 5), dtype=float32, chunksize=(3, 3), chunktype=numpy.ndarray>
247247
Dimensions without coordinates: dim_0, dim_1
248248
>>> agg_reclassify_da = reclassify(agg_da, bins=bins, new_values=new_values) # noqa
249249
>>> print(agg_reclassify_da)
@@ -402,12 +402,12 @@ def quantile(agg: xr.DataArray,
402402
def _run_numpy_jenks_matrices(data, n_classes):
403403
n_data = data.shape[0]
404404
lower_class_limits = np.zeros(
405-
(n_data + 1, n_classes + 1), dtype=np.float64
405+
(n_data + 1, n_classes + 1), dtype=np.float32
406406
)
407407
lower_class_limits[1, 1:n_classes + 1] = 1.0
408408

409409
var_combinations = np.zeros(
410-
(n_data + 1, n_classes + 1), dtype=np.float64
410+
(n_data + 1, n_classes + 1), dtype=np.float32
411411
)
412412
var_combinations[2:n_data + 1, 1:n_classes + 1] = np.inf
413413

@@ -423,7 +423,7 @@ def _run_numpy_jenks_matrices(data, n_classes):
423423
lower_class_limit = l - m
424424
i4 = lower_class_limit - 1
425425

426-
val = np.float64(data[i4])
426+
val = np.float32(data[i4])
427427

428428
# here we're estimating variance for each potential classing
429429
# of the data, for each potential number of classes. `w`
@@ -521,7 +521,7 @@ def _run_jenks(data, n_classes, module):
521521
lower_class_limits, _ = _run_cupy_jenks_matrices(data, n_classes)
522522

523523
k = data.shape[0]
524-
kclass = np.zeros(n_classes + 1, dtype=np.float64)
524+
kclass = np.zeros(n_classes + 1, dtype=np.float32)
525525
kclass[0] = data[0]
526526
kclass[-1] = data[-1]
527527
count_num = n_classes

xrspatial/curvature.py

+6-6
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ class cupy(object):
2727

2828
@ngjit
2929
def _cpu(data, cellsize):
30-
out = np.empty(data.shape, np.float64)
30+
out = np.empty(data.shape, np.float32)
3131
out[:] = np.nan
3232
rows, cols = data.shape
3333
for y in range(1, rows - 1):
@@ -128,7 +128,7 @@ def curvature(agg: xr.DataArray,
128128
>>> import numpy as np
129129
>>> import xarray as xr
130130
>>> from xrspatial import curvature
131-
>>> flat_data = np.zeros((5, 5), dtype=np.float64)
131+
>>> flat_data = np.zeros((5, 5), dtype=np.float32)
132132
>>> flat_raster = xr.DataArray(flat_data, attrs={'res': (1, 1)})
133133
>>> flat_curv = curvature(flat_raster)
134134
>>> print(flat_curv)
@@ -149,20 +149,20 @@ def curvature(agg: xr.DataArray,
149149
[0, 0, 0, 0, 0],
150150
[0, 0, -1, 0, 0],
151151
[0, 0, 0, 0, 0],
152-
[0, 0, 0, 0, 0]], dtype=np.float64)
152+
[0, 0, 0, 0, 0]], dtype=np.float32)
153153
>>> convex_raster = xr.DataArray(
154154
da.from_array(convex_data, chunks=(3, 3)),
155155
attrs={'res': (10, 10)}, name='convex_dask_numpy_raster')
156156
>>> print(convex_raster)
157157
<xarray.DataArray 'convex_dask_numpy_raster' (dim_0: 5, dim_1: 5)>
158-
dask.array<array, shape=(5, 5), dtype=float64, chunksize=(3, 3), chunktype=numpy.ndarray>
158+
dask.array<array, shape=(5, 5), dtype=float32, chunksize=(3, 3), chunktype=numpy.ndarray>
159159
Dimensions without coordinates: dim_0, dim_1
160160
Attributes:
161161
res: (10, 10)
162162
>>> convex_curv = curvature(convex_raster, name='convex_curvature')
163163
>>> print(convex_curv) # return a xarray DataArray with Dask-backed array
164164
<xarray.DataArray 'convex_curvature' (dim_0: 5, dim_1: 5)>
165-
dask.array<_trim, shape=(5, 5), dtype=float64, chunksize=(3, 3), chunktype=numpy.ndarray>
165+
dask.array<_trim, shape=(5, 5), dtype=float32, chunksize=(3, 3), chunktype=numpy.ndarray>
166166
Dimensions without coordinates: dim_0, dim_1
167167
Attributes:
168168
res: (10, 10)
@@ -185,7 +185,7 @@ def curvature(agg: xr.DataArray,
185185
[0, 0, 0, 0, 0],
186186
[0, 0, 1, 0, 0],
187187
[0, 0, 0, 0, 0],
188-
[0, 0, 0, 0, 0]], dtype=np.float64)
188+
[0, 0, 0, 0, 0]], dtype=np.float32)
189189
>>> concave_raster = xr.DataArray(
190190
cupy.asarray(concave_data),
191191
attrs={'res': (10, 10)}, name='concave_cupy_raster')

xrspatial/proximity.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -885,7 +885,7 @@ def allocation(
885885

886886
# convert to have same type as of input @raster
887887
result = xr.DataArray(
888-
(allocation_img).astype(raster.dtype),
888+
allocation_img,
889889
coords=raster.coords,
890890
dims=raster.dims,
891891
attrs=raster.attrs,

xrspatial/tests/conftest.py

+11
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
import pytest
2+
3+
import numpy as np
4+
5+
6+
@pytest.fixture
7+
def random_data(size, dtype):
8+
rng = np.random.default_rng(2841)
9+
data = rng.integers(-100, 100, size=size)
10+
data = data.astype(dtype)
11+
return data

xrspatial/tests/general_checks.py

+79-19
Original file line numberDiff line numberDiff line change
@@ -2,13 +2,32 @@
22
import dask.array as da
33
import xarray as xr
44

5+
from xrspatial.utils import has_cuda
56
from xrspatial.utils import ArrayTypeFunctionMapping
67

78

9+
def create_test_raster(data, backend='numpy', dims=['y', 'x'], attrs=None, chunks=(3, 3)):
10+
raster = xr.DataArray(data, dims=dims, attrs=attrs)
11+
# set coords for test raster
12+
for i, dim in enumerate(dims):
13+
raster[dim] = np.linspace(0, data.shape[i] - 1, data.shape[i])
14+
15+
if has_cuda() and 'cupy' in backend:
16+
import cupy
17+
raster.data = cupy.asarray(raster.data)
18+
19+
if 'dask' in backend:
20+
raster.data = da.from_array(raster.data, chunks=chunks)
21+
22+
return raster
23+
24+
825
def general_output_checks(input_agg: xr.DataArray,
926
output_agg: xr.DataArray,
1027
expected_results: np.ndarray = None,
11-
verify_attrs: bool = True):
28+
verify_attrs: bool = True,
29+
verify_dtype: bool = False,
30+
rtol=1e-06):
1231

1332
# type of output is the same as of input
1433
assert isinstance(output_agg.data, type(input_agg.data))
@@ -29,23 +48,64 @@ def general_output_checks(input_agg: xr.DataArray,
2948
)
3049

3150
if expected_results is not None:
32-
numpy_func = lambda output, expected: np.testing.assert_allclose( # noqa: E731, E501
33-
output, expected_results, equal_nan=True, rtol=1e-06
34-
)
35-
dask_func = lambda output, expected: np.testing.assert_allclose( # noqa: E731, E501
36-
output.compute(), expected_results, equal_nan=True, rtol=1e-06
37-
)
38-
cupy_func = lambda output, expected: np.testing.assert_allclose( # noqa: E731, E501
39-
output.get(), expected_results, equal_nan=True, rtol=1e-06
40-
)
41-
dask_cupy_func = lambda output, expected: np.testing.assert_allclose( # noqa: E731, E501
42-
output.compute().get(), expected_results,
43-
equal_nan=True, rtol=1e-06
44-
)
51+
get_numpy_data = lambda output: output # noqa: E731
52+
get_dask_numpy_data = lambda output: output.compute() # noqa: E731
53+
get_cupy_data = lambda output: output.get() # noqa: E731
54+
get_dask_cupy_data = lambda output: output.compute().get() # noqa: E731
55+
4556
mapper = ArrayTypeFunctionMapping(
46-
numpy_func=numpy_func,
47-
dask_func=dask_func,
48-
cupy_func=cupy_func,
49-
dask_cupy_func=dask_cupy_func,
57+
numpy_func=get_numpy_data,
58+
dask_func=get_dask_numpy_data,
59+
cupy_func=get_cupy_data,
60+
dask_cupy_func=get_dask_cupy_data,
5061
)
51-
mapper(output_agg)(output_agg.data, expected_results)
62+
output_data = mapper(output_agg)(output_agg.data)
63+
np.testing.assert_allclose(output_data, expected_results, equal_nan=True, rtol=rtol)
64+
65+
if verify_dtype:
66+
assert output_data.dtype == expected_results.dtype
67+
68+
69+
def assert_nan_edges_effect(result_agg):
70+
# nan edge effect
71+
edges = [
72+
result_agg.data[0, :],
73+
result_agg.data[-1, :],
74+
result_agg.data[:, 0],
75+
result_agg.data[:, -1],
76+
]
77+
for edge in edges:
78+
np.testing.assert_array_equal(edge, np.nan)
79+
80+
81+
def assert_numpy_equals_dask_numpy(numpy_agg, dask_agg, func, nan_edges=True):
82+
numpy_result = func(numpy_agg)
83+
if nan_edges:
84+
assert_nan_edges_effect(numpy_result)
85+
86+
dask_result = func(dask_agg)
87+
general_output_checks(dask_agg, dask_result)
88+
np.testing.assert_allclose(numpy_result.data, dask_result.data.compute(), equal_nan=True)
89+
90+
91+
def assert_numpy_equals_cupy(numpy_agg, cupy_agg, func, nan_edges=True, atol=0, rtol=1e-7):
92+
numpy_result = func(numpy_agg)
93+
if nan_edges:
94+
assert_nan_edges_effect(numpy_result)
95+
96+
cupy_result = func(cupy_agg)
97+
general_output_checks(cupy_agg, cupy_result)
98+
np.testing.assert_allclose(
99+
numpy_result.data, cupy_result.data.get(), equal_nan=True, atol=atol, rtol=rtol)
100+
101+
102+
def assert_numpy_equals_dask_cupy(numpy_agg, dask_cupy_agg, func, nan_edges=True):
103+
numpy_result = func(numpy_agg)
104+
if nan_edges:
105+
assert_nan_edges_effect(numpy_result)
106+
107+
dask_cupy_result = func(dask_cupy_agg)
108+
general_output_checks(dask_cupy_agg, dask_cupy_result)
109+
np.testing.assert_allclose(
110+
numpy_result.data, dask_cupy_result.data.compute().get(), equal_nan=True
111+
)

xrspatial/tests/test_aspect.py

+66-67
Original file line numberDiff line numberDiff line change
@@ -1,92 +1,91 @@
1-
import dask.array as da
21
import numpy as np
32
import pytest
4-
import xarray as xr
53

64
from xrspatial import aspect
75
from xrspatial.utils import doesnt_have_cuda
86

7+
from xrspatial.tests.general_checks import create_test_raster
8+
from xrspatial.tests.general_checks import assert_numpy_equals_dask_numpy
9+
from xrspatial.tests.general_checks import assert_numpy_equals_cupy
10+
from xrspatial.tests.general_checks import assert_nan_edges_effect
911
from xrspatial.tests.general_checks import general_output_checks
1012

1113

12-
INPUT_DATA = np.asarray([
13-
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
14-
[1584.8767, 1584.8767, 1585.0546, 1585.2324, 1585.2324, 1585.2324],
15-
[1585.0546, 1585.0546, 1585.2324, 1585.588, 1585.588, 1585.588],
16-
[1585.2324, 1585.4102, 1585.588, 1585.588, 1585.588, 1585.588],
17-
[1585.588, 1585.588, 1585.7659, 1585.7659, 1585.7659, 1585.7659],
18-
[1585.7659, 1585.9437, 1585.7659, 1585.7659, 1585.7659, 1585.7659],
19-
[1585.9437, 1585.9437, 1585.9437, 1585.7659, 1585.7659, 1585.7659]],
20-
dtype=np.float32
21-
)
22-
23-
QGIS_OUTPUT = np.asarray([
24-
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
25-
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
26-
[330.94687, 335.55496, 320.70786, 330.94464, 0., 0.],
27-
[333.43494, 333.43494, 329.03394, 341.56897, 0., 18.434948],
28-
[338.9621, 338.20062, 341.56506, 0., 0., 45.],
29-
[341.56506, 351.8699, 26.56505, 45., -1., 90.],
30-
[351.86676, 11.306906, 45., 45., 45., 108.431015]], dtype=np.float32
31-
)
32-
14+
def input_data(backend='numpy'):
15+
data = np.asarray([
16+
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
17+
[1584.8767, 1584.8767, 1585.0546, 1585.2324, 1585.2324, 1585.2324],
18+
[1585.0546, 1585.0546, 1585.2324, 1585.588, 1585.588, 1585.588],
19+
[1585.2324, 1585.4102, 1585.588, 1585.588, 1585.588, 1585.588],
20+
[1585.588, 1585.588, 1585.7659, 1585.7659, 1585.7659, 1585.7659],
21+
[1585.7659, 1585.9437, 1585.7659, 1585.7659, 1585.7659, 1585.7659],
22+
[1585.9437, 1585.9437, 1585.9437, 1585.7659, 1585.7659, 1585.7659]],
23+
dtype=np.float32
24+
)
25+
raster = create_test_raster(data, backend, attrs={'res': (10.0, 10.0)})
26+
return raster
27+
28+
29+
@pytest.fixture
30+
def qgis_output():
31+
result = np.array([
32+
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
33+
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
34+
[330.94687, 335.55496, 320.70786, 330.94464, 0., 0.],
35+
[333.43494, 333.43494, 329.03394, 341.56897, 0., 18.434948],
36+
[338.9621, 338.20062, 341.56506, 0., 0., 45.],
37+
[341.56506, 351.8699, 26.56505, 45., -1., 90.],
38+
[351.86676, 11.306906, 45., 45., 45., 108.431015]], dtype=np.float32
39+
)
40+
return result
3341

34-
def test_numpy_equals_qgis():
3542

36-
small_da = xr.DataArray(INPUT_DATA, attrs={'res': (10.0, 10.0)})
37-
xrspatial_aspect = aspect(small_da, name='numpy_aspect')
43+
def test_numpy_equals_qgis(qgis_output):
44+
numpy_agg = input_data()
45+
xrspatial_aspect = aspect(numpy_agg, name='numpy_aspect')
3846

39-
general_output_checks(small_da, xrspatial_aspect)
47+
general_output_checks(numpy_agg, xrspatial_aspect, verify_dtype=True)
4048
assert xrspatial_aspect.name == 'numpy_aspect'
4149

42-
# validate output values
4350
xrspatial_vals = xrspatial_aspect.data[1:-1, 1:-1]
44-
qgis_vals = QGIS_OUTPUT[1:-1, 1:-1]
51+
qgis_vals = qgis_output[1:-1, 1:-1]
4552
# aspect is nan if nan input
4653
# aspect is invalid (-1) if slope equals 0
47-
# otherwise aspect are from 0 - 360
54+
# otherwise aspect are from 0 to 360
4855
np.testing.assert_allclose(xrspatial_vals, qgis_vals, equal_nan=True)
49-
5056
# nan edge effect
51-
xrspatial_edges = [
52-
xrspatial_aspect.data[0, :],
53-
xrspatial_aspect.data[-1, :],
54-
xrspatial_aspect.data[:, 0],
55-
xrspatial_aspect.data[:, -1],
56-
]
57-
for edge in xrspatial_edges:
58-
np.testing.assert_allclose(
59-
edge, np.full(edge.shape, np.nan), equal_nan=True
60-
)
61-
62-
63-
def test_numpy_equals_dask():
64-
small_numpy_based_data_array = xr.DataArray(
65-
INPUT_DATA, attrs={'res': (10.0, 10.0)}
66-
)
67-
small_dask_based_data_array = xr.DataArray(
68-
da.from_array(INPUT_DATA, chunks=(2, 2)), attrs={'res': (10.0, 10.0)}
69-
)
57+
assert_nan_edges_effect(xrspatial_aspect)
7058

71-
numpy_result = aspect(small_numpy_based_data_array, name='numpy_result')
72-
dask_result = aspect(small_dask_based_data_array,
73-
name='dask_result')
74-
general_output_checks(small_dask_based_data_array, dask_result)
75-
np.testing.assert_allclose(
76-
numpy_result.data, dask_result.data.compute(), equal_nan=True)
7759

60+
def test_numpy_equals_dask_qgis_data():
61+
# compare using the data run through QGIS
62+
numpy_agg = input_data('numpy')
63+
dask_agg = input_data('dask+numpy')
64+
assert_numpy_equals_dask_numpy(numpy_agg, dask_agg, aspect)
7865

79-
@pytest.mark.skipif(doesnt_have_cuda(), reason="CUDA Device not Available")
80-
def test_cpu_equals_gpu():
8166

82-
import cupy
67+
@pytest.mark.parametrize("size", [(2, 4), (10, 15)])
68+
@pytest.mark.parametrize(
69+
"dtype", [np.int32, np.int64, np.uint32, np.uint64, np.float32, np.float64])
70+
def test_numpy_equals_dask_random_data(random_data):
71+
numpy_agg = create_test_raster(random_data, backend='numpy')
72+
dask_agg = create_test_raster(random_data, backend='dask')
73+
assert_numpy_equals_dask_numpy(numpy_agg, dask_agg, aspect)
74+
75+
76+
@pytest.mark.skipif(doesnt_have_cuda(), reason="CUDA Device not Available")
77+
def test_numpy_equals_cupy_qgis_data():
78+
# compare using the data run through QGIS
79+
numpy_agg = input_data()
80+
cupy_agg = input_data('cupy')
81+
assert_numpy_equals_cupy(numpy_agg, cupy_agg, aspect)
8382

84-
small_da = xr.DataArray(INPUT_DATA, attrs={'res': (10.0, 10.0)})
85-
small_da_cupy = xr.DataArray(cupy.asarray(INPUT_DATA),
86-
attrs={'res': (10.0, 10.0)})
8783

88-
# aspect by xrspatial
89-
cpu = aspect(small_da, name='aspect_agg')
90-
gpu = aspect(small_da_cupy, name='aspect_agg')
91-
general_output_checks(small_da_cupy, gpu)
92-
np.testing.assert_allclose(cpu.data, gpu.data.get(), equal_nan=True)
84+
@pytest.mark.skipif(doesnt_have_cuda(), reason="CUDA Device not Available")
85+
@pytest.mark.parametrize("size", [(2, 4), (10, 15)])
86+
@pytest.mark.parametrize(
87+
"dtype", [np.int32, np.int64, np.uint32, np.uint64, np.float32, np.float64])
88+
def test_numpy_equals_cupy_random_data(random_data):
89+
numpy_agg = create_test_raster(random_data, backend='numpy')
90+
cupy_agg = create_test_raster(random_data, backend='cupy')
91+
assert_numpy_equals_cupy(numpy_agg, cupy_agg, aspect, atol=1e-6, rtol=1e-6)

0 commit comments

Comments
 (0)