forked from openai/openai-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompletions.py
1148 lines (897 loc) · 58.3 KB
/
completions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Dict, List, Union, Iterable, Optional
from typing_extensions import Literal, overload
import httpx
from .. import _legacy_response
from ..types import completion_create_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import (
required_args,
maybe_transform,
async_maybe_transform,
)
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from .._streaming import Stream, AsyncStream
from .._base_client import (
make_request_options,
)
from ..types.completion import Completion
from ..types.chat.chat_completion_stream_options_param import ChatCompletionStreamOptionsParam
__all__ = ["Completions", "AsyncCompletions"]
class Completions(SyncAPIResource):
@cached_property
def with_raw_response(self) -> CompletionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return CompletionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> CompletionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return CompletionsWithStreamingResponse(self)
@overload
def create(
self,
*,
model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]],
prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None],
best_of: Optional[int] | NotGiven = NOT_GIVEN,
echo: Optional[bool] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN,
stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Completion:
"""
Creates a completion for the provided prompt and parameters.
Args:
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
prompt: The prompt(s) to generate completions for, encoded as a string, array of
strings, array of tokens, or array of token arrays.
Note that <|endoftext|> is the document separator that the model sees during
training, so if a prompt is not specified the model will generate as if from the
beginning of a new document.
best_of: Generates `best_of` completions server-side and returns the "best" (the one with
the highest log probability per token). Results cannot be streamed.
When used with `n`, `best_of` controls the number of candidate completions and
`n` specifies how many to return – `best_of` must be greater than `n`.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
echo: Echo back the prompt in addition to the completion
frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
existing frequency in the text so far, decreasing the model's likelihood to
repeat the same line verbatim.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
logit_bias: Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the GPT
tokenizer) to an associated bias value from -100 to 100. You can use this
[tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
Mathematically, the bias is added to the logits generated by the model prior to
sampling. The exact effect will vary per model, but values between -1 and 1
should decrease or increase likelihood of selection; values like -100 or 100
should result in a ban or exclusive selection of the relevant token.
As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
from being generated.
logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
well the chosen tokens. For example, if `logprobs` is 5, the API will return a
list of the 5 most likely tokens. The API will always return the `logprob` of
the sampled token, so there may be up to `logprobs+1` elements in the response.
The maximum value for `logprobs` is 5.
max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
completion.
The token count of your prompt plus `max_tokens` cannot exceed the model's
context length.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
n: How many completions to generate for each prompt.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model's likelihood to
talk about new topics.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
seed: If specified, our system will make a best effort to sample deterministically,
such that repeated requests with the same `seed` and parameters should return
the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint`
response parameter to monitor changes in the backend.
stop: Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
stream: Whether to stream back partial progress. If set, tokens will be sent as
data-only
[server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]`
message.
[Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
stream_options: Options for streaming response. Only set this when you set `stream: true`.
suffix: The suffix that comes after a completion of inserted text.
This parameter is only supported for `gpt-3.5-turbo-instruct`.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
We generally recommend altering this or `top_p` but not both.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or `temperature` but not both.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
...
@overload
def create(
self,
*,
model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]],
prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None],
stream: Literal[True],
best_of: Optional[int] | NotGiven = NOT_GIVEN,
echo: Optional[bool] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Stream[Completion]:
"""
Creates a completion for the provided prompt and parameters.
Args:
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
prompt: The prompt(s) to generate completions for, encoded as a string, array of
strings, array of tokens, or array of token arrays.
Note that <|endoftext|> is the document separator that the model sees during
training, so if a prompt is not specified the model will generate as if from the
beginning of a new document.
stream: Whether to stream back partial progress. If set, tokens will be sent as
data-only
[server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]`
message.
[Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
best_of: Generates `best_of` completions server-side and returns the "best" (the one with
the highest log probability per token). Results cannot be streamed.
When used with `n`, `best_of` controls the number of candidate completions and
`n` specifies how many to return – `best_of` must be greater than `n`.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
echo: Echo back the prompt in addition to the completion
frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
existing frequency in the text so far, decreasing the model's likelihood to
repeat the same line verbatim.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
logit_bias: Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the GPT
tokenizer) to an associated bias value from -100 to 100. You can use this
[tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
Mathematically, the bias is added to the logits generated by the model prior to
sampling. The exact effect will vary per model, but values between -1 and 1
should decrease or increase likelihood of selection; values like -100 or 100
should result in a ban or exclusive selection of the relevant token.
As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
from being generated.
logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
well the chosen tokens. For example, if `logprobs` is 5, the API will return a
list of the 5 most likely tokens. The API will always return the `logprob` of
the sampled token, so there may be up to `logprobs+1` elements in the response.
The maximum value for `logprobs` is 5.
max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
completion.
The token count of your prompt plus `max_tokens` cannot exceed the model's
context length.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
n: How many completions to generate for each prompt.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model's likelihood to
talk about new topics.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
seed: If specified, our system will make a best effort to sample deterministically,
such that repeated requests with the same `seed` and parameters should return
the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint`
response parameter to monitor changes in the backend.
stop: Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
stream_options: Options for streaming response. Only set this when you set `stream: true`.
suffix: The suffix that comes after a completion of inserted text.
This parameter is only supported for `gpt-3.5-turbo-instruct`.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
We generally recommend altering this or `top_p` but not both.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or `temperature` but not both.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
...
@overload
def create(
self,
*,
model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]],
prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None],
stream: bool,
best_of: Optional[int] | NotGiven = NOT_GIVEN,
echo: Optional[bool] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Completion | Stream[Completion]:
"""
Creates a completion for the provided prompt and parameters.
Args:
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
prompt: The prompt(s) to generate completions for, encoded as a string, array of
strings, array of tokens, or array of token arrays.
Note that <|endoftext|> is the document separator that the model sees during
training, so if a prompt is not specified the model will generate as if from the
beginning of a new document.
stream: Whether to stream back partial progress. If set, tokens will be sent as
data-only
[server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]`
message.
[Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
best_of: Generates `best_of` completions server-side and returns the "best" (the one with
the highest log probability per token). Results cannot be streamed.
When used with `n`, `best_of` controls the number of candidate completions and
`n` specifies how many to return – `best_of` must be greater than `n`.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
echo: Echo back the prompt in addition to the completion
frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
existing frequency in the text so far, decreasing the model's likelihood to
repeat the same line verbatim.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
logit_bias: Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the GPT
tokenizer) to an associated bias value from -100 to 100. You can use this
[tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
Mathematically, the bias is added to the logits generated by the model prior to
sampling. The exact effect will vary per model, but values between -1 and 1
should decrease or increase likelihood of selection; values like -100 or 100
should result in a ban or exclusive selection of the relevant token.
As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
from being generated.
logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
well the chosen tokens. For example, if `logprobs` is 5, the API will return a
list of the 5 most likely tokens. The API will always return the `logprob` of
the sampled token, so there may be up to `logprobs+1` elements in the response.
The maximum value for `logprobs` is 5.
max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
completion.
The token count of your prompt plus `max_tokens` cannot exceed the model's
context length.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
n: How many completions to generate for each prompt.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model's likelihood to
talk about new topics.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
seed: If specified, our system will make a best effort to sample deterministically,
such that repeated requests with the same `seed` and parameters should return
the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint`
response parameter to monitor changes in the backend.
stop: Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
stream_options: Options for streaming response. Only set this when you set `stream: true`.
suffix: The suffix that comes after a completion of inserted text.
This parameter is only supported for `gpt-3.5-turbo-instruct`.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
We generally recommend altering this or `top_p` but not both.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or `temperature` but not both.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
...
@required_args(["model", "prompt"], ["model", "prompt", "stream"])
def create(
self,
*,
model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]],
prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None],
best_of: Optional[int] | NotGiven = NOT_GIVEN,
echo: Optional[bool] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN,
stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Completion | Stream[Completion]:
return self._post(
"/completions",
body=maybe_transform(
{
"model": model,
"prompt": prompt,
"best_of": best_of,
"echo": echo,
"frequency_penalty": frequency_penalty,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_tokens": max_tokens,
"n": n,
"presence_penalty": presence_penalty,
"seed": seed,
"stop": stop,
"stream": stream,
"stream_options": stream_options,
"suffix": suffix,
"temperature": temperature,
"top_p": top_p,
"user": user,
},
completion_create_params.CompletionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Completion,
stream=stream or False,
stream_cls=Stream[Completion],
)
class AsyncCompletions(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncCompletionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncCompletionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncCompletionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncCompletionsWithStreamingResponse(self)
@overload
async def create(
self,
*,
model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]],
prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None],
best_of: Optional[int] | NotGiven = NOT_GIVEN,
echo: Optional[bool] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN,
stream: Optional[Literal[False]] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Completion:
"""
Creates a completion for the provided prompt and parameters.
Args:
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
prompt: The prompt(s) to generate completions for, encoded as a string, array of
strings, array of tokens, or array of token arrays.
Note that <|endoftext|> is the document separator that the model sees during
training, so if a prompt is not specified the model will generate as if from the
beginning of a new document.
best_of: Generates `best_of` completions server-side and returns the "best" (the one with
the highest log probability per token). Results cannot be streamed.
When used with `n`, `best_of` controls the number of candidate completions and
`n` specifies how many to return – `best_of` must be greater than `n`.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
echo: Echo back the prompt in addition to the completion
frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
existing frequency in the text so far, decreasing the model's likelihood to
repeat the same line verbatim.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
logit_bias: Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the GPT
tokenizer) to an associated bias value from -100 to 100. You can use this
[tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
Mathematically, the bias is added to the logits generated by the model prior to
sampling. The exact effect will vary per model, but values between -1 and 1
should decrease or increase likelihood of selection; values like -100 or 100
should result in a ban or exclusive selection of the relevant token.
As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
from being generated.
logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
well the chosen tokens. For example, if `logprobs` is 5, the API will return a
list of the 5 most likely tokens. The API will always return the `logprob` of
the sampled token, so there may be up to `logprobs+1` elements in the response.
The maximum value for `logprobs` is 5.
max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
completion.
The token count of your prompt plus `max_tokens` cannot exceed the model's
context length.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
n: How many completions to generate for each prompt.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model's likelihood to
talk about new topics.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
seed: If specified, our system will make a best effort to sample deterministically,
such that repeated requests with the same `seed` and parameters should return
the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint`
response parameter to monitor changes in the backend.
stop: Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
stream: Whether to stream back partial progress. If set, tokens will be sent as
data-only
[server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]`
message.
[Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
stream_options: Options for streaming response. Only set this when you set `stream: true`.
suffix: The suffix that comes after a completion of inserted text.
This parameter is only supported for `gpt-3.5-turbo-instruct`.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
We generally recommend altering this or `top_p` but not both.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or `temperature` but not both.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
...
@overload
async def create(
self,
*,
model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]],
prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None],
stream: Literal[True],
best_of: Optional[int] | NotGiven = NOT_GIVEN,
echo: Optional[bool] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncStream[Completion]:
"""
Creates a completion for the provided prompt and parameters.
Args:
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
prompt: The prompt(s) to generate completions for, encoded as a string, array of
strings, array of tokens, or array of token arrays.
Note that <|endoftext|> is the document separator that the model sees during
training, so if a prompt is not specified the model will generate as if from the
beginning of a new document.
stream: Whether to stream back partial progress. If set, tokens will be sent as
data-only
[server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]`
message.
[Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
best_of: Generates `best_of` completions server-side and returns the "best" (the one with
the highest log probability per token). Results cannot be streamed.
When used with `n`, `best_of` controls the number of candidate completions and
`n` specifies how many to return – `best_of` must be greater than `n`.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
echo: Echo back the prompt in addition to the completion
frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
existing frequency in the text so far, decreasing the model's likelihood to
repeat the same line verbatim.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
logit_bias: Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the GPT
tokenizer) to an associated bias value from -100 to 100. You can use this
[tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
Mathematically, the bias is added to the logits generated by the model prior to
sampling. The exact effect will vary per model, but values between -1 and 1
should decrease or increase likelihood of selection; values like -100 or 100
should result in a ban or exclusive selection of the relevant token.
As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
from being generated.
logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
well the chosen tokens. For example, if `logprobs` is 5, the API will return a
list of the 5 most likely tokens. The API will always return the `logprob` of
the sampled token, so there may be up to `logprobs+1` elements in the response.
The maximum value for `logprobs` is 5.
max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
completion.
The token count of your prompt plus `max_tokens` cannot exceed the model's
context length.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
n: How many completions to generate for each prompt.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
whether they appear in the text so far, increasing the model's likelihood to
talk about new topics.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
seed: If specified, our system will make a best effort to sample deterministically,
such that repeated requests with the same `seed` and parameters should return
the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint`
response parameter to monitor changes in the backend.
stop: Up to 4 sequences where the API will stop generating further tokens. The
returned text will not contain the stop sequence.
stream_options: Options for streaming response. Only set this when you set `stream: true`.
suffix: The suffix that comes after a completion of inserted text.
This parameter is only supported for `gpt-3.5-turbo-instruct`.
temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
make the output more random, while lower values like 0.2 will make it more
focused and deterministic.
We generally recommend altering this or `top_p` but not both.
top_p: An alternative to sampling with temperature, called nucleus sampling, where the
model considers the results of the tokens with top_p probability mass. So 0.1
means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or `temperature` but not both.
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
...
@overload
async def create(
self,
*,
model: Union[str, Literal["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]],
prompt: Union[str, List[str], Iterable[int], Iterable[Iterable[int]], None],
stream: bool,
best_of: Optional[int] | NotGiven = NOT_GIVEN,
echo: Optional[bool] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str], None] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
suffix: Optional[str] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Completion | AsyncStream[Completion]:
"""
Creates a completion for the provided prompt and parameters.
Args:
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
prompt: The prompt(s) to generate completions for, encoded as a string, array of
strings, array of tokens, or array of token arrays.
Note that <|endoftext|> is the document separator that the model sees during
training, so if a prompt is not specified the model will generate as if from the
beginning of a new document.
stream: Whether to stream back partial progress. If set, tokens will be sent as
data-only
[server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]`
message.
[Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
best_of: Generates `best_of` completions server-side and returns the "best" (the one with
the highest log probability per token). Results cannot be streamed.
When used with `n`, `best_of` controls the number of candidate completions and
`n` specifies how many to return – `best_of` must be greater than `n`.
**Note:** Because this parameter generates many completions, it can quickly
consume your token quota. Use carefully and ensure that you have reasonable
settings for `max_tokens` and `stop`.
echo: Echo back the prompt in addition to the completion
frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
existing frequency in the text so far, decreasing the model's likelihood to
repeat the same line verbatim.
[See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
logit_bias: Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the GPT
tokenizer) to an associated bias value from -100 to 100. You can use this
[tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
Mathematically, the bias is added to the logits generated by the model prior to
sampling. The exact effect will vary per model, but values between -1 and 1
should decrease or increase likelihood of selection; values like -100 or 100
should result in a ban or exclusive selection of the relevant token.
As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
from being generated.
logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
well the chosen tokens. For example, if `logprobs` is 5, the API will return a
list of the 5 most likely tokens. The API will always return the `logprob` of
the sampled token, so there may be up to `logprobs+1` elements in the response.
The maximum value for `logprobs` is 5.
max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
completion.
The token count of your prompt plus `max_tokens` cannot exceed the model's
context length.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
n: How many completions to generate for each prompt.
**Note:** Because this parameter generates many completions, it can quickly