-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
218 lines (157 loc) · 5.48 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from math import floor, e
import sys
def linear(xprop, ys):
""" Linear interpolation """
max_index = len(ys)-1
x = max_index * xprop
x0 = int(floor(x))
x1 = int(x0+1)
if x1 > max_index:
return ys[-1]
else:
y0 = ys[x0]
y1 = ys[x1]
return y0 + (y1-y0)*((x-x0)/(x1-x0))
def nearest(xprop, ys):
""" Nearest neighbor """
index = int(floor(xprop * (len(ys))))
return ys[index]
def rescale(ys, ymin=0, ymax=1):
""" Return rescaling parameters given a list of values,
and a new minimum and maximum. """
bounds = min(ys), max(ys)
ys_range = bounds[1] - bounds[0]
new_range = ymax - ymin
ys_mid = sum(bounds)*.5
new_mid = sum([ymax, ymin])*.5
scale = float(new_range) / ys_range
return scale, ys_mid, new_mid
def euclidean_rhythm(steps=16, pulses=4, shift=0, length=1, onset=False):
"""euclidean rhythm
Returns a list with a given number of pulses
spaced as equally as possible over a given number
of steps. Based on the paper 'The Euclidean Algorithm
Generates Traditional Musical Rhythms' by Godfried
Toussaint (2005). Optionally, it gives the note onsets
using a bar with duration "length". Rewritten from bjorklund
function.
"""
# Create the pattern with pulses (ones) and zeros
pattern = [[1] for i in range(pulses)]
suffix = [[0] for i in range(steps - pulses)]
# Iterate
while len(suffix) > 1:
for i, sf in enumerate(suffix):
if pattern:
pattern[i % len(pattern)] += sf
else:
pattern.append(sf)
# Reshift
lsuf = len(suffix)
lpat = len(pattern)
suffix = pattern[(lsuf % lpat):]
pattern = pattern[:(lsuf % lpat)]
# output flattened list, and shift
pattern = pattern + suffix
pattern = [bool(val) for L in pattern for val in L]
pattern = pattern[-shift:] + pattern[:-shift]
if onset:
onsets = [i*(1.0/steps) for i in range(steps) if pattern[i]]
onsets = [on*length for on in onsets]
output = (pattern, onsets)
else:
output = pattern
return output
def cumsum(arr):
""" Cumulative sum. Start at zero. Exclude arr[-1]. """
return [sum(arr[:i]) for i in range(len(arr))]
def roll(arr, step):
""" Roll array, by "step". """
return arr[step:] + arr[:step]
def diff(arr1, arr2):
""" Return difference between two arrays. """
return [i - j for i, j in zip(arr1, arr2)]
def diff_single(arr, val):
""" Return difference between array and scalar. """
return [i - val for i in arr]
def add(*args):
""" Return sum of any number of arrays. """
return [sum(vals) for vals in zip(*args)]
def add_single(arr, val):
""" Return sum of array and scalar. """
return [i + val for i in arr]
def abs_array(arr):
""" Return absolute array. """
return [abs(i) for i in arr]
def equal(*args):
""" Return boolean array for equal values in any number of arrays. """
return [vals[1:] == vals[:-1] for vals in zip(*args)]
def mul_single(arr, val):
""" Multiply array with scalar. """
return [val * i for i in arr]
def floor_div(arr, val):
""" Floor division of array by value. """
return [i // val for i in arr]
def modulo(arr, val):
""" Modulo division of array by value. """
return [i % val for i in arr]
def argsort(arr):
""" Return indices of ordered values in list. """
out = []
for i in sorted(set(arr)):
check_from = 0
for j in range(arr.count(i)):
index = arr.index(i, check_from)
out.append(index)
check_from = index + 1
return out
def linspace(start, end, num=50):
""" Return equally spaced array from "start" to "end" with "num" vals. """
return [start+i*((end-start)/float(num-1)) for i in range(num)]
def leading_zeros(val, n):
""" Return string with "n" leading zeros to integer. """
return (n - len(str(val))) * '0' + str(val)
def secs2time(secs):
""" Return string with hours, minutes, seconds and subseconds """
secs = float(secs)
# Hours
hours = int(secs // 3600)
remaining = secs % 3600
# Minutes
minutes = int(remaining // 60)
remaining = remaining % 60
# Seconds
seconds = int(floor(remaining))
remaining = remaining - floor(remaining)
# Subseconds
subseconds = int(round(remaining, 3) * 1000)
# Combine
the_time = [leading_zeros(hours, 2),
leading_zeros(minutes, 2),
leading_zeros(seconds, 2),
leading_zeros(subseconds, 3)]
return ':'.join(the_time)
def dashed_string(string, dashes=20, dash='-'):
""" Pretty dashed string. """
if string:
sides = ((dashes - len(string)) / 2) - 1
out = dash*sides + ' ' + string + ' ' + dash*sides
out += dash*(dashes-len(out))
else:
out = dash*dashes
return out
def print_note(the_time, name, velocity, msg, channel, col_width=14):
""" Print pretty notes. """
line = [the_time]
cols = ['']*int(channel) + [name + ' (' + velocity +') ' + msg]
line += [dashed_string(col, col_width) for col in cols]
sys.stdout.write(' | '.join(line) + '\n')
def flatten_list(lol, max_deg=1):
""" recursively flatten list into single depth list. """
flat_list = []
for item in lol:
if hasattr(item, '__iter__') and max_deg > 0:
flat_list += flatten_list(item, max_deg-1)
else:
flat_list.append(item)
return flat_list