-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
364 lines (301 loc) · 11.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from collections import OrderedDict
from config import FLAGS, MAX_WORDS, MAX_INGREDIENTS, param, MAX_TITLE
from glob import glob
import json
import jsonlines
import numpy as np
import os
import re, unidecode
import tensorflow as tf
############
# TFRecord #
############
def convert_to_record(recipes, filename):
def int64_f(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def float_f(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def bytes_f(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
cat2id = param('cat2id')
depth = param('depth')
_, table = char_tables(param('chars'))
# Write records
print('Creating TFRecords', filename, len(recipes), 'elements')
writer = tf.python_io.TFRecordWriter(filename)
for i, recipe in enumerate(recipes):
if i % 500 == 0:
print(i)
categories = np.zeros(depth, np.int64) - 1
hierarchy = (recipe['hierarchy'] + ['Other'])[:depth]
for j in range(0, len(hierarchy)):
key = '/'.join(hierarchy[:j + 1])
if key not in cat2id:
key = '/'.join(hierarchy[:j] + ['Other'])
if key not in cat2id:
break
categories[j] = cat2id[key]
if categories[0] == -1:
continue
# Labels
title = clean_text(recipe['title'])
title = bytes(title[:MAX_TITLE].translate(table), 'ascii')
feature = dict(categories=int64_f(categories),
title=bytes_f([title]),
ingredients=int64_f([len(recipe['ingredients'])]))
# Ingredients
for i, ingredient in enumerate(recipe['ingredients']):
if i > MAX_INGREDIENTS:
break
ingredient = clean_text(ingredient)
ingredient = bytes(ingredient[:MAX_WORDS].translate(table), 'ascii')
feature['ingredient%i' % i] = bytes_f([ingredient])
example = tf.train.Example(features=tf.train.Features(feature=feature))
writer.write(example.SerializeToString())
writer.close()
###########
# Dataset #
###########
def create_dataset(records, shuffle):
max_categories = param('depth')
default = tf.constant(chr(0))
def parse_function(serialized):
features = dict(
categories=tf.FixedLenFeature([max_categories], tf.int64),
title=tf.FixedLenFeature([], tf.string))
for i in range(MAX_INGREDIENTS):
features['ingredient%d' % i] = tf.FixedLenFeature(
[], tf.string, default)
parsed = tf.parse_single_example(serialized, features=features)
categories = tf.cast(parsed['categories'], tf.int32)
title = tf.decode_raw(parsed['title'], tf.uint8)
title = tf.pad(title, [[0, MAX_TITLE - tf.shape(title)[0]]])
title.set_shape([MAX_TITLE])
# Ingredients
ingredients = []
for i in range(MAX_INGREDIENTS):
ingredient = tf.decode_raw(parsed['ingredient%d' % i], tf.uint8)
ingredient = tf.pad(ingredient, [[0, MAX_WORDS - tf.shape(ingredient)[0]]])
ingredients += [ingredient]
ingredients = tf.stack(ingredients)
ingredients.set_shape([MAX_INGREDIENTS, MAX_WORDS])
return title, categories, ingredients
dataset = tf.data.TFRecordDataset(records)
dataset = dataset.map(parse_function, num_parallel_calls=16)
dataset = dataset.batch(FLAGS.batch_size)
dataset = dataset.filter(
lambda x, *_: tf.equal(tf.shape(x)[0], FLAGS.batch_size))
if shuffle:
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.prefetch(10000)
return dataset
def datasets(dataset_list):
result = []
for records, shuffle in dataset_list:
result += [create_dataset(records, shuffle)]
iterator = tf.data.Iterator.from_structure(
result[0].output_types, result[0].output_shapes)
next_element = iterator.get_next()
return (next_element,
[iterator.make_initializer(x) for x in result])
##############
# Allrecipes #
##############
def allrecipe_tree(recipes):
tree = OrderedDict()
def add_node(hierarchy, t):
key, *rest = hierarchy
if key not in t:
t[key] = (0, OrderedDict())
t[key] = (t[key][0] + 1,
add_node(rest, t[key][1]) if rest else t[key][1])
return t
for recipe in recipes:
add_node(recipe['hierarchy'], tree)
# strip subcategories that are too small
def strip(tree):
for key in list(tree.keys()):
if tree[key][0] < 40:
del tree[key]
for key in tree.keys():
tree[key] = (tree[key][0], strip(tree[key][1]))
return tree
tree = strip(tree)
def fix_missing(tree):
for key in list(tree.keys()):
size, children = tree[key]
children_size = sum([x[0] for x in children.values()])
if size >= children_size and children_size > 0:
size_other = size - children_size
if size_other == 0 and len(children.values()) == 1:
del children[list(children.keys())[0]]
elif size_other > 0:
children['Other'] = (size_other, {})
for key in tree.keys():
tree[key] = (tree[key][0], fix_missing(tree[key][1]))
return tree
tree = fix_missing(tree)
def as_list(tree):
res = []
total = 0
for key, (count, subtree) in tree.items():
total += count
for key, (count, subtree) in tree.items():
res += [(key, count / total, as_list(subtree))]
return res
return as_list(tree)
def count_nodes(tree):
count = 0
for _, __, node in tree:
count += count_nodes(node) + 1
return count
def tree_vecs(tree):
def max_siblings(tree, depth):
if depth == 0:
return len(tree)
results = []
for key, count, subtree in tree:
results += [max_siblings(subtree, depth - 1)]
return max(results) if results else 0
def tree_index(tree, coord):
index, *coord = coord
if index >= len(tree):
return None
key, count, subtree = tree[index]
if not coord:
return subtree
return tree_index(subtree, coord)
start, end = 0, max_siblings(tree, 0)
weights = [[x[1] for x in tree]]
indexes = [[start, end]]
start = end
l1 = np.zeros([max_siblings(tree, 0), 2], np.int)
l1_weights = np.zeros([max_siblings(tree, i) for i in range(2)])
for i in range(l1.shape[0]):
node = tree_index(tree, [i])
if node:
end = start + len(node)
l1_weights[i][0:len(node)] = [x[1] for x in node]
l1[i] = [start, end]
start = end
indexes += [l1.tolist()]
weights += [l1_weights.tolist()]
l2 = np.zeros([max_siblings(tree, 0), max_siblings(tree, 1), 2], np.int)
l2_weights = np.zeros([max_siblings(tree, i) for i in range(3)])
for i in range(l2.shape[0]):
for j in range(l2.shape[1]):
node = tree_index(tree, [i, j])
if node:
end = start + len(node)
l2_weights[i, j][0:len(node)] = [x[1] for x in node]
l2[i, j] = [start, end]
start = end
indexes += [l2.tolist()]
weights += [l2_weights.tolist()]
cat2id = {}
def walk_bf(tree, prefix):
for i, (key, count, subtree) in enumerate(tree):
cat2id[prefix + key] = i
walk_bf(subtree, prefix + key + '/')
walk_bf(tree, '')
return dict(indexes=indexes,
cat2id=cat2id,
depth=3,
weights=weights,
tree=tree)
def save_allrecipes():
recipes = allrecipes()
tree = allrecipe_tree(recipes)
result = tree_vecs(tree)
result.update(charset(recipes))
with open(os.path.join(FLAGS.data_dir, 'allrecipes-info.json'), 'w') as f:
json.dump(result, f)
return result
def allrecipes():
filenames = glob(os.path.join(FLAGS.data_dir, 'recipes*.jl'))
recipes = []
dups = set()
dups_count = 0
blacklist = ['Everyday Cooking', 'World Cuisine', 'U.S. Recipes',
'Events and Gatherings', 'Trusted Brands: Recipes and Tips']
total = 0
for filename in filenames:
with jsonlines.open(filename) as reader:
for obj in reader:
total += 1
# Skip dups
title = obj.get('title')[0]
if title in dups:
dups_count += 1
continue
dups.add(title)
# Save recipe
hierarchy = obj.get('hierarchy')[2:]
if (not hierarchy or # Different behaviour on server?!
any(x == hierarchy[0] for x in blacklist) or
hierarchy == ['Main Dish']):
continue
ingredients = obj.get('ingredients')[:MAX_INGREDIENTS]
ingredients = [clean_text(x)[:MAX_WORDS] for x in ingredients]
recipes += [dict(
title=title, hierarchy=hierarchy, ingredients=ingredients)]
print('Total', total, 'Duplicates', dups_count, 'Valid', len(recipes))
with open(os.path.join(FLAGS.data_dir, 'allrecipes.json'), 'w') as f:
json.dump(recipes, f)
return recipes
###########
# Helpers #
###########
def read_ingredient(ingredient):
_, table = char_tables(param('chars'))
ingredient = clean_text(ingredient)
ingredient = bytes(ingredient[:MAX_WORDS].translate(table), 'ascii')
ingredient = np.frombuffer(ingredient, dtype=np.uint8)
ingredient = np.pad(ingredient, [0, MAX_WORDS - ingredient.shape[0]], 'constant')
return ingredient
def recipes_clean():
with open(os.path.join(FLAGS.data_dir, 'allrecipes.json'), ) as f:
recipes = json.load(f)
def f(item): # hack to align this list with tfrecords
if item['hierarchy'][0] in ['Holidays and Events', 'Fruits and Vegetables', 'Holidays and Events']:
return False
return True
return list(filter(f, recipes))
def ingredients_clean():
recipes = recipes_clean()
ingredients_txt = set()
for recipe in recipes:
ingredients_txt |= set([clean_text(x) for x in recipe['ingredients']])
return sorted(list(ingredients_txt))
def charset(recipes):
chars = set()
for recipe in recipes:
ingredients = clean_text(''.join(recipe['ingredients']))
ingredients += clean_text(recipe['title'])
chars |= set(ingredients)
chars = ''.join(sorted(list(chars)))
return dict(chars=chars)
def char_tables(chars):
id2char = str.maketrans(''.join([chr(i) for i in range(len(chars))]), chars, )
char2id = str.maketrans(chars, ''.join([chr(i) for i in range(len(chars))]))
return id2char, char2id
regex_punctuation = re.compile('[%s]' % re.escape('!"#$%&\'()*+,-.:;<=>?@[\\]^_`{|}~/'))
regex_space = re.compile('\s+')
regex_numbers = re.compile('[0-9]')
regex_words = re.compile('cups?|teaspoons?|tablespoons?|pounds?')
def clean_text(text):
text = unidecode.unidecode(text).lower()
text = regex_punctuation.sub(' ', text)
text = regex_words.sub(' ', text)
text = regex_space.sub(' ', text)
return text
def main():
save_allrecipes()
recipes = recipes_clean()
if not recipes:
print('No recipes found!')
return
convert_to_record(recipes[:1000], FLAGS.records_val)
convert_to_record(recipes[1000:], FLAGS.records_train)
if __name__ == '__main__':
main()