Skip to content

Latest commit

 

History

History
338 lines (262 loc) · 13.6 KB

README.md

File metadata and controls

338 lines (262 loc) · 13.6 KB

Docker build Test suites Check for new version

Immich is a high performance self-hosted photo and video backup solution.

immich

What is it ?

This repo is a fork of the official AIO image for Immich. Its main goal is to provide docker images with pre-installed machine learning support for CUDA and openvino.

Version Tags

This image offers different versions via tags. Be cautious when using unstable or development tags, and read their descriptions carefully.

Tag x86-64 arm64 Description
latest Latest Immich release.
armnn Latest Immich release and support for Arm Cortex-A CPUs and Arm Mali GPUs for machine-learning acceleration.
cuda Latest Immich release and support for cuda for machine-learning acceleration (Nvidia).
noml Latest Immich release without machine-learning.
openvino Latest Immich release and support for openvino for machine-learning acceleration (Intel).

Application Setup

The WebUI can be accessed at http://your-ip:8080 Follow the wizard to set up Immich.

To use Immich, you need to have PostgreSQL 14/15/16 server with pgvecto.rs set up externally, and Redis set up externally or within the container using a docker mod.

To use a SSL connection to your PostgreSQL database, include a PostgreSQL URL in the DB_URL environment variable.

Hardware Acceleration for videos

Intel - QSV/VAAPI

To use Intel Quicksync hardware acceleration:

  • Ensure your container has access to the /dev/dri video device.

  • Add the device to your container by including the following option:

    • Docker CLI:

      docker run --device=/dev/dri:/dev/dri ...
    • Docker Compose:

    services:
      immich:
        image: ghcr.io/martabal/immich:latest
        ...
        devices:
          - "/dev/dri:/dev/dri"

Nvidia - NVENC/VAAPI

To use Nvidia hardware acceleration:

  • First, install the Nvidia container runtime on your host machine. Follow the installation instructions here.

  • Recreate or create a new Docker container using the Nvidia runtime. This can be done in two ways:

  • Add both --runtime=nvidia and NVIDIA_VISIBLE_DEVICES=all to your Docker run command. Replace all with a specific GPU's UUID if needed:

    • Docker CLI:

      docker run --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all
    • Docker Compose:

    services:
      immich:
        image: ghcr.io/martabal/immich:latest
        ...
        runtime: nvidia
        environment:
          ...
          - NVIDIA_VISIBLE_DEVICES=all
  • Alternatively, use --gpus=all:

    • Docker CLI:

      docker run --gpus=all ...
    • Docker Compose:

    services:
      immich:
        image: ghcr.io/martabal/immich:latest
        ...
        deploy:
          resources:
            reservations:
              devices:
                - driver: nvidia
                  count: 1
                  capabilities:
                    - gpu

Machine-learning acceleration

Arm Cortex-A CPUs and Arm Mali GPUs - Arm NN

  • Docker CLI:

    docker run --device=/dev/mali0:/dev/mali0 -p /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro -p /usr/lib/libmali.so:/usr/lib/libmali.so:ro ...
  • Docker Compose:

services:
  immich:
    image: ghcr.io/martabal/immich:latest
    ...
    devices:
      - /dev/mali0:/dev/mali0
    volumes:
      ...
      - /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro
      - /usr/lib/libmali.so:/usr/lib/libmali.so:ro

Intel - OpenVINO

  • Make sure your iGPU/GPU supports OpenVINO

  • Docker CLI:

    docker run --device=/dev/dri --device-cgroup-rule='c 189:* rmw' -v /dev/bus/usb:/dev/bus/usb ...
  • Docker Compose:

services:
  immich:
    image: ghcr.io/martabal/immich:latest
    ...
    device_cgroup_rules:
      - 'c 189:* rmw'
    devices:
      - /dev/dri:/dev/dri
    volumes:
      ...
      - /dev/bus/usb:/dev/bus/usb

Nvidia - CUDA

For Nvidia GPUs with Nvidia/CUDA hardware acceleration, use the same commands used for video transcoding.

Add your existing libraries into Immich

  • Mount your existing library folder to /libraries/<your-library>
  • In your administration settings, go to "External Libraries", add a library owner, and set the paths for your libraries (it must start with /libraries/<your-library>)

Usage

Example snippets to start creating a container:

Docker Compose

services:
  immich:
    image: ghcr.io/martabal/immich:latest
    container_name: immich
    environment:
      - PUID=1000
      - PGID=1000
      - TZ=Etc/UTC
      - DB_HOSTNAME=192.168.1.x
      - DB_USERNAME=postgres
      - DB_PASSWORD=postgres
      - DB_DATABASE_NAME=immich
      - REDIS_HOSTNAME=192.168.1.x
      - DB_PORT=5432 #optional
      - REDIS_PORT=6379 #optional
      - REDIS_PASSWORD= #optional
      - MACHINE_LEARNING_HOST=0.0.0.0 #optional
      - MACHINE_LEARNING_PORT=3003 #optional
      - MACHINE_LEARNING_WORKERS=1 #optional
      - MACHINE_LEARNING_WORKER_TIMEOUT=120 #optional
    volumes:
      - path_to_appdata:/config
      - path_to_photos:/photos
      - path_to_libraries:/libraries #optional
    ports:
      - 8080:8080
    restart: unless-stopped
  # This container requires an external application to be run separately to be run separately.
  # By default, ports for the databases are opened, be careful when deploying it
  # Redis:
  redis:
    image: redis
    ports:
      - 6379:6379
    container_name: redis
  # PostgreSQL 14:
  postgres14:
    image: tensorchord/pgvecto-rs:pg14-v0.2.0
    ports:
      - 5432:5432
    container_name: postgres14
    environment:
      POSTGRES_USER: postgres
      POSTGRES_PASSWORD: postgres
      POSTGRES_DB: immich
    volumes:
      - path_to_postgres:/var/lib/postgresql/data
docker run -d \
  --name=immich \
  -e PUID=1000 \
  -e PGID=1000 \
  -e TZ=Etc/UTC \
  -e DB_HOSTNAME=192.168.1.x \
  -e DB_USERNAME=postgres \
  -e DB_PASSWORD=postgres \
  -e DB_DATABASE_NAME=immich \
  -e REDIS_HOSTNAME=192.168.1.x \
  -e DB_PORT=5432 `#optional` \
  -e REDIS_PORT=6379 `#optional` \
  -e REDIS_PASSWORD= `#optional` \
  -e MACHINE_LEARNING_HOST=0.0.0.0 `#optional` \
  -e MACHINE_LEARNING_PORT=3003 `#optional` \
  -e MACHINE_LEARNING_WORKERS=1 `#optional` \
  -e MACHINE_LEARNING_WORKER_TIMEOUT=120 `#optional` \
  -p 8080:8080 \
  -v path_to_appdata:/config \
  -v path_to_photos:/photos \
  -v path_to_libraries:/libraries `#optional` \
  --restart unless-stopped \
  ghcr.io/martabal/immich:latest

# This container requires an external application to be run separately.
# By default, ports for the databases are opened, be careful when deploying it
# Redis:
docker run -d \
  --name=redis \
  -p 6379:6379 \
  redis

# PostgreSQL 14:
docker run -d \
  --name=postgres14 \
  -e POSTGRES_USER=postgres \
  -e POSTGRES_PASSWORD=postgres \
  -e POSTGRES_DB=immich \
  -v path_to_postgres:/var/lib/postgresql/data \
  -p 5432:5432 \
  tensorchord/pgvecto-rs:pg14-v0.2.0

Variables

To configure the container, pass variables at runtime using the format <external>:<internal>. For instance, -p 8080:80 exposes port 80 inside the container, making it accessible outside the container via the host's IP on port 8080.

Variable Description
-p 8080 WebUI Port
-e PUID=1000 UID for permissions - see below for explanation
-e PGID=1000 GID for permissions - see below for explanation
-e TZ=Etc/UTC Specify a timezone to use, see this list.
-e DB_HOSTNAME=192.168.1.x PostgreSQL Host
-e DB_USERNAME=postgres PostgreSQL Username
-e DB_PASSWORD=postgres PostgreSQL Password
-e DB_DATABASE_NAME=immich PostgreSQL Database Name
-e REDIS_HOSTNAME=192.168.1.x Redis Hostname
-e DB_PORT=5432 PostgreSQL Port
-e REDIS_PORT=6379 Redis Port
-e REDIS_PASSWORD= Redis password
-e MACHINE_LEARNING_HOST=0.0.0.0 Immich machine-learning host
-e MACHINE_LEARNING_PORT=3003 Immich machine-learning port
-e MACHINE_LEARNING_WORKERS=1 Machine learning workers
-e MACHINE_LEARNING_WORKER_TIMEOUT=120 Machine learning worker timeout
-v /config Contains machine learning models (~1.5GB with default models)
-v /photos Contains all the photos uploaded to Immich
-v /libraries Contains all your already existing medias

Umask for running applications

The image allow overriding the default umask setting for services started within the containers using the optional -e UMASK=022 option. Note that umask works differently than chmod and subtracts permissions based on its value, not adding. For more information, please refer to the Wikipedia article on umask here.

User / Group Identifiers

To avoid permissions issues when using volumes (-v flags) between the host OS and the container, you can specify the user (PUID) and group (PGID). Make sure that the volume directories on the host are owned by the same user you specify, and the issues will disappear.

Example: PUID=1000 and PGID=1000. To find your PUID and PGID, run id user.

  $ id username
    uid=1000(dockeruser) gid=1000(dockergroup) groups=1000(dockergroup)

Updating the Container

Check the Application Setup section for recommendations for the specific image.

Instructions for updating the container:

Via Docker Compose

  • Update all images: docker-compose pull or update a single image: docker-compose pull immich
  • Let compose update all containers as necessary: docker-compose up -d or update a single container: docker-compose up -d immich
  • You can also remove the old dangling images: docker image prune

Via Docker Run

  • Update the image: docker pull ghcr.io/martabal/immich:latest
  • Stop the running container: docker stop immich
  • Delete the container: docker rm immich
  • Recreate a new container with the same docker run parameters as instructed above (if mapped correctly to a host folder, your /config folder and settings will be preserved)
  • You can also remove the old dangling images: docker image prune