Skip to content

Commit 65a0eff

Browse files
committed
ipro -> power_measure
1 parent 3b0d4bc commit 65a0eff

File tree

2 files changed

+107
-151
lines changed

2 files changed

+107
-151
lines changed

classical/functions.v

Lines changed: 0 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -2657,11 +2657,6 @@ Lemma fct_prodE (I : Type) (T : pointedType) (M : ringType) r (P : {pred I})
26572657
\prod_(i <- r | P i) f i = fun x => \prod_(i <- r | P i) f i x.
26582658
Proof. by apply/funext => ?; elim/big_rec2: _ => //= i y ? Pi <-. Qed.
26592659

2660-
Lemma fct_prodE (I : Type) (T : pointedType) (M : comRingType) r (P : {pred I})
2661-
(f : I -> T -> M) (x : T) :
2662-
(\prod_(i <- r | P i) f i) x = \prod_(i <- r | P i) f i x.
2663-
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed.
2664-
26652660
Lemma mul_funC (T : Type) {R : comSemiRingType} (f : T -> R) (r : R) :
26662661
r \*o f = r \o* f.
26672662
Proof. by apply/funext => x/=; rewrite mulrC. Qed.
@@ -2684,10 +2679,6 @@ Lemma prodrfctE (T : pointedType) (K : ringType) (s : seq (T -> K)) :
26842679
\prod_(f <- s) f = (fun x => \prod_(f <- s) f x).
26852680
Proof. exact: fct_prodE. Qed.
26862681

2687-
Lemma prodrfctE (T : pointedType) (K : comRingType) (s : seq (T -> K)) :
2688-
\prod_(f <- s) f = (fun x => \prod_(f <- s) f x).
2689-
Proof. by apply/funext => x;elim/big_ind2 : _ => // _ a _ b <- <-. Qed.
2690-
26912682
Lemma natmulfctE (U : Type) (K : nmodType) (f : U -> K) n :
26922683
f *+ n = (fun x => f x *+ n).
26932684
Proof. by elim: n => [//|n h]; rewrite funeqE=> ?; rewrite !mulrSr h. Qed.

0 commit comments

Comments
 (0)