File tree Expand file tree Collapse file tree 2 files changed +107
-151
lines changed
Expand file tree Collapse file tree 2 files changed +107
-151
lines changed Original file line number Diff line number Diff line change @@ -2657,11 +2657,6 @@ Lemma fct_prodE (I : Type) (T : pointedType) (M : ringType) r (P : {pred I})
26572657 \prod_(i <- r | P i) f i = fun x => \prod_(i <- r | P i) f i x.
26582658Proof . by apply/funext => ?; elim/big_rec2: _ => //= i y ? Pi <-. Qed .
26592659
2660- Lemma fct_prodE (I : Type ) (T : pointedType) (M : comRingType) r (P : {pred I})
2661- (f : I -> T -> M) (x : T) :
2662- (\prod_(i <- r | P i) f i) x = \prod_(i <- r | P i) f i x.
2663- Proof . by elim/big_rec2: _ => //= i y ? Pi <-. Qed .
2664-
26652660Lemma mul_funC (T : Type ) {R : comSemiRingType} (f : T -> R) (r : R) :
26662661 r \*o f = r \o* f.
26672662Proof . by apply/funext => x/=; rewrite mulrC. Qed .
@@ -2684,10 +2679,6 @@ Lemma prodrfctE (T : pointedType) (K : ringType) (s : seq (T -> K)) :
26842679 \prod_(f <- s) f = (fun x => \prod_(f <- s) f x).
26852680Proof . exact: fct_prodE. Qed .
26862681
2687- Lemma prodrfctE (T : pointedType) (K : comRingType) (s : seq (T -> K)) :
2688- \prod_(f <- s) f = (fun x => \prod_(f <- s) f x).
2689- Proof . by apply/funext => x;elim/big_ind2 : _ => // _ a _ b <- <-. Qed .
2690-
26912682Lemma natmulfctE (U : Type ) (K : nmodType) (f : U -> K) n :
26922683 f *+ n = (fun x => f x *+ n).
26932684Proof . by elim: n => [//|n h]; rewrite funeqE=> ?; rewrite !mulrSr h. Qed .
You can’t perform that action at this time.
0 commit comments