@@ -1861,6 +1861,52 @@ rewrite diff_comp // !derive1E' //= -[X in 'd _ _ X = _]mulr1.
18611861by rewrite [LHS]linearZ mulrC.
18621862Qed .
18631863
1864+ Section near_derive.
1865+ Context (R : numFieldType) (V W : normedModType R).
1866+ Variables (f g : V -> W) (a v : V).
1867+ Hypotheses (v0 : v != 0) (afg : {near a, f =1 g}).
1868+
1869+ Let near_derive :
1870+ {near 0^', (fun h => h^-1 *: (f (h *: v + a) - f a)) =1
1871+ (fun h => h^-1 *: (g (h *: v + a) - g a))}.
1872+ Proof .
1873+ near do congr (_ *: _).
1874+ move: afg; rewrite {1}/prop_near1/= nbhsE/= => -[B [oB Ba] /[dup] Bfg Bfg'].
1875+ have [e /= e0 eB] := open_subball oB Ba.
1876+ have vv0 : 0 < `|2 *: v| by rewrite normrZ mulr_gt0 ?normr_gt0.
1877+ near=> x.
1878+ have x0 : 0 < `|x| by rewrite normr_gt0//; near: x; exact: nbhs_dnbhs_neq.
1879+ congr (_ - _); last exact: Bfg'.
1880+ apply: Bfg; apply: (eB (`|x| * `|2 *: v|)).
1881+ - rewrite /ball_/= sub0r normrN normrM !normr_id -ltr_pdivlMr//.
1882+ by near: x; apply: dnbhs0_lt; rewrite divr_gt0.
1883+ - by rewrite mulr_gt0.
1884+ - rewrite -ball_normE/= opprD addrCA subrr addr0 normrN normrZ ltr_pM2l//.
1885+ by rewrite normrZ ltr_pMl ?normr_gt0// gtr0_norm ?ltr1n.
1886+ Unshelve. all: by end_near. Qed .
1887+
1888+ Lemma near_eq_derivable : derivable f a v -> derivable g a v.
1889+ Proof .
1890+ move=> /cvg_ex[/= l fl]; apply/cvg_ex; exists l => /=.
1891+ by apply: cvg_trans fl; apply: near_eq_cvg; exact: near_derive.
1892+ Qed .
1893+
1894+ Lemma near_eq_derive : 'D_v f a = 'D_v g a.
1895+ Proof .
1896+ rewrite /derive; congr (lim _).
1897+ have {}fg := near_derive.
1898+ rewrite eqEsubset; split; apply: near_eq_cvg=> //.
1899+ by move/filterS : fg; apply => ? /esym.
1900+ Qed .
1901+
1902+ Lemma near_eq_is_derive (df : W) : is_derive a v f df -> is_derive a v g df.
1903+ Proof .
1904+ move=> [fav <-]; rewrite near_eq_derive.
1905+ by apply: DeriveDef => //; exact: near_eq_derivable fav.
1906+ Qed .
1907+
1908+ End near_derive.
1909+
18641910(* Trick to trigger type class resolution *)
18651911Lemma trigger_derive (R : realType) (f : R -> R) x x1 y1 :
18661912 is_derive x (1 : R) f x1 -> x1 = y1 -> is_derive x 1 f y1.
0 commit comments