Skip to content

Commit 7c82ae0

Browse files
Doc: definitions expressed as a table in constructive_ereal.v (#1452)
--------- Co-authored-by: Reynald Affeldt <[email protected]>
1 parent f29e974 commit 7c82ae0

File tree

2 files changed

+36
-7
lines changed

2 files changed

+36
-7
lines changed

classical/classical_sets.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ From mathcomp Require Import mathcomp_extra boolp wochoice.
3434
(* set (i.e., of type set rT) *)
3535
(* - indexed sets are rather named F *)
3636
(* *)
37-
(* Example of notations: *)
37+
(* Examples of notations: *)
3838
(* | Coq notations | | Meaning | *)
3939
(* |-----------------------------:|---|:------------------------------------ *)
4040
(* | set0 |==| $\emptyset$ *)

reals/constructive_ereal.v

Lines changed: 35 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -16,14 +16,43 @@ From mathcomp Require Import mathcomp_extra signed.
1616
(**md**************************************************************************)
1717
(* # Extended real numbers $\overline{R}$ *)
1818
(* *)
19-
(* Given a type R for numbers, \bar R is the type R extended with symbols *)
20-
(* -oo and +oo (notation scope: %E), suitable to represent extended real *)
21-
(* numbers. When R is a numDomainType, \bar R is equipped with a canonical *)
22-
(* porderType and operations for addition/opposite. When R is a *)
23-
(* realDomainType, \bar R is equipped with a Canonical orderType. *)
19+
(* Given a type R for numbers, `\bar R` is the type `R` extended with symbols *)
20+
(* `-oo` and `+oo` (notation scope: `%E`), suitable to represent extended *)
21+
(* real numbers. When `R` is a `numDomainType`, `\bar R` is equipped with a *)
22+
(* canonical `porderType` and operations for addition/opposite. When `R` is a *)
23+
(* `realDomainType`, `\bar R` is equipped with a canonical `orderType`. *)
2424
(* *)
2525
(* Naming convention: in definition/lemma identifiers, "e" stands for an *)
26-
(* extended number and "y" and "Ny" for +oo ad -oo respectively. *)
26+
(* extended number and "y" and "Ny" for `+oo` and `-oo` respectively. *)
27+
(* *)
28+
(* Examples of notations: *)
29+
(* | Coq definitions | | Meaning | *)
30+
(* |-----------------------:|--|--------------------------------------------| *)
31+
(* | `\bar R` |==| coproduct of `R` and $\{+\infty, -\infty\}$| *)
32+
(* | | | notation for `extended (R:Type)` | *)
33+
(* | `r%:E` |==| injects real numbers into `\bar R` | *)
34+
(* | `+%E, -%E, *%E` |==| addition/opposite/multiplication for | *)
35+
(* | | | extended reals | *)
36+
(* | `er_map (f : T -> T')` |==| the `\bar T -> \bar T'` lifting of `f` | *)
37+
(* | `sqrte` |==| square root for extended reals | *)
38+
(* | `` `\| x \|%E `` |==| the absolute value of `x` | *)
39+
(* | `x ^+ n` |==| iterated multiplication | *)
40+
(* | `x *+ n` |==| iterated addition | *)
41+
(* | `+%dE, (x *+ n)%dE` |==| dual addition/dual iterated addition | *)
42+
(* | | | ($-\infty + +\infty = +\infty$) | *)
43+
(* | | | Import DualAddTheory for related lemmas | *)
44+
(* | `x +? y` |==| the addition of `x` and `y` is defined | *)
45+
(* | | | it is neither $+\infty - \infty$ | *)
46+
(* | | | nor $-\infty + \infty$ | *)
47+
(* | `x *? y` |==| the multiplication of `x` and `y` is not | *)
48+
(* | | | of the form $0 * +\infty$ or $0 * -\infty$ | *)
49+
(* | `(_ <= _)%E`, `(_ < _)%E`,|==| comparison relations for extended reals | *)
50+
(* | `(_ >= _)%E`, `(_ > _)%E` | | | *)
51+
(* | `(\sum_(i in A) f i)%E`|==| bigop-like notation in scope `%E` | *)
52+
(* |`(\prod_(i in A) f i)%E`|==| bigop-like notation in scope `%E` | *)
53+
(* | `maxe x y, mine x y` |==| notation for the maximum/minimum | *)
54+
(* *)
55+
(* Detailed documentation: *)
2756
(* ``` *)
2857
(* \bar R == coproduct of R and {+oo, -oo}; *)
2958
(* notation for extended (R:Type) *)

0 commit comments

Comments
 (0)