diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index f15c915450..eb08591b9f 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -119,6 +119,9 @@ - new file `measurable_realfun.v` + with as contents the first half of the file `lebesgue_measure.v` +- in `derive.v`: + + lemmas `near_eq_derivable`, `near_eq_derive`, `near_eq_is_derive` + ### Changed - in `lebesgue_integral.v` diff --git a/theories/derive.v b/theories/derive.v index 9bbfe99c26..c106e58cc5 100644 --- a/theories/derive.v +++ b/theories/derive.v @@ -1861,6 +1861,52 @@ rewrite diff_comp // !derive1E' //= -[X in 'd _ _ X = _]mulr1. by rewrite [LHS]linearZ mulrC. Qed. +Section near_derive. +Context (R : numFieldType) (V W : normedModType R). +Variables (f g : V -> W) (a v : V). +Hypotheses (v0 : v != 0) (afg : {near a, f =1 g}). + +Let near_derive : + {near 0^', (fun h => h^-1 *: (f (h *: v + a) - f a)) =1 + (fun h => h^-1 *: (g (h *: v + a) - g a))}. +Proof. +near do congr (_ *: _). +move: afg; rewrite {1}/prop_near1/= nbhsE/= => -[B [oB Ba] /[dup] Bfg Bfg']. +have [e /= e0 eB] := open_subball oB Ba. +have vv0 : 0 < `|2 *: v| by rewrite normrZ mulr_gt0 ?normr_gt0. +near=> x. +have x0 : 0 < `|x| by rewrite normr_gt0//; near: x; exact: nbhs_dnbhs_neq. +congr (_ - _); last exact: Bfg'. +apply: Bfg; apply: (eB (`|x| * `|2 *: v|)). +- rewrite /ball_/= sub0r normrN normrM !normr_id -ltr_pdivlMr//. + by near: x; apply: dnbhs0_lt; rewrite divr_gt0. +- by rewrite mulr_gt0. +- rewrite -ball_normE/= opprD addrCA subrr addr0 normrN normrZ ltr_pM2l//. + by rewrite normrZ ltr_pMl ?normr_gt0// gtr0_norm ?ltr1n. +Unshelve. all: by end_near. Qed. + +Lemma near_eq_derivable : derivable f a v -> derivable g a v. +Proof. +move=> /cvg_ex[/= l fl]; apply/cvg_ex; exists l => /=. +by apply: cvg_trans fl; apply: near_eq_cvg; exact: near_derive. +Qed. + +Lemma near_eq_derive : 'D_v f a = 'D_v g a. +Proof. +rewrite /derive; congr (lim _). +have {}fg := near_derive. +rewrite eqEsubset; split; apply: near_eq_cvg=> //. +by move/filterS : fg; apply => ? /esym. +Qed. + +Lemma near_eq_is_derive (df : W) : is_derive a v f df -> is_derive a v g df. +Proof. +move=> [fav <-]; rewrite near_eq_derive. +by apply: DeriveDef => //; exact: near_eq_derivable fav. +Qed. + +End near_derive. + (* Trick to trigger type class resolution *) Lemma trigger_derive (R : realType) (f : R -> R) x x1 y1 : is_derive x (1 : R) f x1 -> x1 = y1 -> is_derive x 1 f y1. diff --git a/theories/topology_theory/topology_structure.v b/theories/topology_theory/topology_structure.v index 1b6b57aae1..3b2d09806c 100644 --- a/theories/topology_theory/topology_structure.v +++ b/theories/topology_theory/topology_structure.v @@ -104,7 +104,7 @@ HB.structure Definition PointedTopological := {T of PointedNbhs T & Nbhs_isTopological T}. #[short(type="bpTopologicalType")] -HB.structure Definition BiPointedTopological := +HB.structure Definition BiPointedTopological := { X of BiPointed X & Topological X }. Section Topological1.