diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index ce8b64fa26..c3166b5229 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -23,6 +23,9 @@ + lemmas `in_set1`, `inr_in_set_inr`, `inl_in_set_inr`, `mem_image`, `mem_range`, `image_f` + lemmas `inr_in_set_inl`, `inl_in_set_inl` +- in `lebesgue_integral_approximation.v`: + + lemma `measurable_prod` + ### Changed - in `pi_irrational`: diff --git a/theories/lebesgue_integral_theory/lebesgue_integral_approximation.v b/theories/lebesgue_integral_theory/lebesgue_integral_approximation.v index 4850ce47cb..3572deb58b 100644 --- a/theories/lebesgue_integral_theory/lebesgue_integral_approximation.v +++ b/theories/lebesgue_integral_theory/lebesgue_integral_approximation.v @@ -576,8 +576,8 @@ Section measurable_sum. Context d (T : measurableType d) (R : realType). Implicit Types (D : set T) (f g : T -> R). -Lemma measurable_sum D I s (h : I -> (T -> R)) : - (forall n, measurable_fun D (h n)) -> +Lemma measurable_sum D I s (h : I -> T -> R) : + (forall i, measurable_fun D (h i)) -> measurable_fun D (fun x => \sum_(i <- s) h i x). Proof. move=> mh; apply/measurable_EFinP. @@ -586,6 +586,17 @@ rewrite (_ : _ \o _ = (fun t => \sum_(i <- s) (h i t)%:E)); last first. by apply/emeasurable_sum => i; exact/measurable_EFinP. Qed. +Lemma measurable_prod D (I : eqType) (s : seq I) (h : I -> T -> R) : + (forall i, i \in s -> measurable_fun D (h i)) -> + measurable_fun D (fun x => \prod_(i <- s) h i x). +Proof. +elim: s => [mh|x y ih mh]. + by under eq_fun do rewrite big_nil//=; exact: measurable_cst. +under eq_fun do rewrite big_cons//=; apply: measurable_funM => //. +- by apply: mh; rewrite mem_head. +- by apply: ih => n ny; apply: mh; rewrite inE orbC ny. +Qed. + End measurable_sum. Section emeasurable_comparison.