diff --git a/theories/cauchyreals.v b/theories/cauchyreals.v index b919860..2059e59 100644 --- a/theories/cauchyreals.v +++ b/theories/cauchyreals.v @@ -628,7 +628,7 @@ Lemma cst_crealP (x : F) : creal_axiom (fun _ => x). Proof. by exists (fun _ => 0%N)=> *; rewrite subrr normr0. Qed. Definition cst_creal (x : F) := CReal (cst_crealP x). Notation "x %:CR" := (cst_creal x) - (at level 2, left associativity, format "x %:CR") : creal_scope. + (at level 1, left associativity, format "x %:CR") : creal_scope. Notation "0" := (0 %:CR) : creal_scope. Lemma lbound0P (x : creal) (x_neq0 : x != 0) i : @@ -1638,7 +1638,7 @@ Notation "!=%CR" := neq_creal : creal_scope. Notation "x != y" := (neq_creal x y) : creal_scope. Notation "x %:CR" := (cst_creal x) - (at level 2, left associativity, format "x %:CR") : creal_scope. + (at level 1, left associativity, format "x %:CR") : creal_scope. Notation "0" := (0 %:CR)%CR : creal_scope. Notation "<%CR" := lt_creal : creal_scope. diff --git a/theories/complex.v b/theories/complex.v index e9b19af..00efb60 100644 --- a/theories/complex.v +++ b/theories/complex.v @@ -30,7 +30,7 @@ Reserved Notation "x +i* y" Reserved Notation "x -i* y" (at level 40, left associativity, format "x -i* y"). Reserved Notation "R [i]" - (at level 2, left associativity, format "R [i]"). + (at level 1, left associativity, format "R [i]"). Local Notation sgr := Num.sg. Local Notation sqrtr := Num.sqrt. diff --git a/theories/realalg.v b/theories/realalg.v index 7b930de..667b7cb 100644 --- a/theories/realalg.v +++ b/theories/realalg.v @@ -571,7 +571,7 @@ Definition to_alg_def (phF : phant F) : F -> alg := lift_embed alg cst_algcreal. Notation to_alg := (@to_alg_def (Phant F)). Notation "x %:RA" := (to_alg x) - (at level 2, left associativity, format "x %:RA"). + (at level 1, left associativity, format "x %:RA"). Local Notation "p ^ f" := (map_poly f p) : ring_scope. Canonical to_alg_pi_morph := PiEmbed to_alg. @@ -1176,7 +1176,7 @@ End RealAlg. Notation to_alg F := (@to_alg_def _ (Phant F)). Notation "x %:RA" := (to_alg _ x) - (at level 2, left associativity, format "x %:RA"). + (at level 1, left associativity, format "x %:RA"). Lemma upper_nthrootVP (F : archiFieldType) (x : F) (i : nat) : 0 < x -> (Num.bound (x ^-1) <= i)%N -> 2%:R ^- i < x. @@ -1381,7 +1381,7 @@ Notation "{ 'realclosure' F }" := (RealAlg.alg F). Notation annul_realalg := RealAlg.annul_alg. Notation realalg_of F := (@RealAlg.to_alg_def _ (Phant F)). Notation "x %:RA" := (realalg_of x) - (at level 2, left associativity, format "x %:RA"). + (at level 1, left associativity, format "x %:RA"). HB.instance Definition _ (F : archiFieldType) := GRing.RMorphism.on (to_alg F).