Skip to content

Commit 2a67cc1

Browse files
committed
Update README.md
1 parent e09f9e2 commit 2a67cc1

File tree

2 files changed

+14
-10
lines changed

2 files changed

+14
-10
lines changed

README.md

Lines changed: 14 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ ImgX-DiffSeg is a Jax-based deep learning toolkit using Flax for biomedical imag
44

55
This repository includes the implementation of the following work
66

7-
- [A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models](https://arxiv.org/abs/2308.16355)
7+
- [A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models](https://melba-journal.org/2023:016)
88
- [Importance of Aligning Training Strategy with Evaluation for Diffusion Models in 3D Multiclass Segmentation](https://arxiv.org/abs/2303.06040)
99

1010
:construction: **The codebase is still under active development for more enhancements and
@@ -29,7 +29,7 @@ applications.** :construction:
2929
features or [reach out](https://orcid.org/0000-0002-1184-7421) for collaborations. :mailbox:
3030

3131
<div>
32-
<img src="images/diffusion_training_strategy_diagram.png" width="600" alt="diffusion_training_strategy_diagram"></img>
32+
<img src="images/melba_graphic_abstract.png" width="600" alt="graphic_abstract"></img>
3333
</div>
3434

3535
## Features
@@ -54,7 +54,7 @@ See the [readme](imgx_datasets/README.md) for further details.
5454
prediction ([x0-parameterization](https://arxiv.org/abs/2102.09672)).
5555
- [Importance sampling](https://arxiv.org/abs/2102.09672) for timestep.
5656
- Recycling training strategies, including [xt-recycling](https://arxiv.org/abs/2303.06040) and
57-
[xT-recycling](https://arxiv.org/abs/2308.16355).
57+
[xT-recycling](https://melba-journal.org/2023:016).
5858
- Self-conditioning training strategies, including
5959
[Chen et al. 2022](https://arxiv.org/abs/2208.04202) and
6060
[Watson et al. 2023.](https://www.nature.com/articles/s41586-023-06415-8).
@@ -311,13 +311,17 @@ London and the University of Manchester, and Cloud TPUs from Google's TPU Resear
311311
If you find the code base and method useful in your research, please cite the relevant paper:
312312

313313
```bibtex
314-
@article{fu2023recycling,
315-
title={A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models},
316-
author={Fu, Yunguan and Li, Yiwen and Saeed, Shaheer U and Clarkson, Matthew J and Hu, Yipeng},
317-
journal={arXiv preprint arXiv:2308.16355},
318-
year={2023},
319-
doi={10.48550/arXiv.2308.16355},
320-
url={https://arxiv.org/abs/2308.16355},
314+
@article{melba:2023:016:fu,
315+
title = "A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models",
316+
author = "Fu, Yunguan and Li, Yiwen and Saeed, Shaheer U. and Clarkson, Matthew J. and Hu, Yipeng",
317+
journal = "Machine Learning for Biomedical Imaging",
318+
volume = "2",
319+
issue = "Special Issue for Generative Models",
320+
year = "2023",
321+
pages = "507--546",
322+
issn = "2766-905X",
323+
doi = "https://doi.org/10.59275/j.melba.2023-fbe4",
324+
url = "https://melba-journal.org/2023:016"
321325
}
322326
323327
@article{fu2023importance,

images/melba_graphic_abstract.png

1.52 MB
Loading

0 commit comments

Comments
 (0)