-
Notifications
You must be signed in to change notification settings - Fork 397
/
Copy pathpen-plotter-patchwork.js
127 lines (103 loc) · 3.23 KB
/
pen-plotter-patchwork.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
const canvasSketch = require('canvas-sketch');
const { polylinesToSVG } = require('canvas-sketch-util/penplot');
const random = require('canvas-sketch-util/random');
const clustering = require('density-clustering');
const convexHull = require('convex-hull');
const debug = false;
const settings = {
dimensions: [ 12, 12 ],
pixelsPerInch: 300,
units: 'cm',
};
const sketch = ({ width, height, units, render }) => {
// A large point count will produce more defined results
const pointCount = 50000;
let points = Array.from(new Array(pointCount)).map(() => {
const margin = 2;
return [
random.range(margin, width - margin),
random.range(margin, height - margin)
];
});
// We will add to this over time
const lines = [];
// The N value for k-means clustering
// Lower values will produce bigger chunks
const clusterCount = 3;
// Thickness of pen in cm
const penThickness = 0.03;
// Run at 30 FPS until we run out of points
let loop = setInterval(() => {
const remaining = integrate();
if (!remaining) return clearInterval(loop);
render();
}, 1000 / 30);
return ({ context }) => {
// Clear canvas
context.clearRect(0, 0, width, height);
// Fill with white
context.fillStyle = 'white';
context.fillRect(0, 0, width, height);
// Draw lines
lines.forEach(points => {
context.beginPath();
points.forEach(p => context.lineTo(p[0], p[1]));
context.strokeStyle = debug ? 'blue' : 'black';
context.lineWidth = penThickness;
context.lineJoin = 'round';
context.lineCap = 'round';
context.stroke();
});
// Turn on debugging if you want to see the points
if (debug) {
points.forEach(p => {
context.beginPath();
context.arc(p[0], p[1], 0.02, 0, Math.PI * 2);
context.strokeStyle = context.fillStyle = 'red';
context.lineWidth = penThickness;
context.fill();
});
}
return [
// Export PNG as first layer
context.canvas,
// Export SVG for pen plotter as second layer
{
data: polylinesToSVG(lines, {
width,
height,
units
}),
extension: '.svg'
}
];
};
function integrate () {
// Not enough points in our data set
if (points.length <= clusterCount) return false;
// k-means cluster our data
const scan = new clustering.KMEANS();
const clusters = scan.run(points, clusterCount)
.filter(c => c.length >= 3);
// Ensure we resulted in some clusters
if (clusters.length === 0) return;
// Sort clusters by density
clusters.sort((a, b) => a.length - b.length);
// Select the least dense cluster
const cluster = clusters[0];
const positions = cluster.map(i => points[i]);
// Find the hull of the cluster
const edges = convexHull(positions);
// Ensure the hull is large enough
if (edges.length <= 2) return;
// Create a closed polyline from the hull
let path = edges.map(c => positions[c[0]]);
path.push(path[0]);
// Add to total list of polylines
lines.push(path);
// Remove those points from our data set
points = points.filter(p => !positions.includes(p));
return true;
}
};
canvasSketch(sketch, settings);