From 71249bbc8797d21241c6ff0e7d71e08c0ab7845f Mon Sep 17 00:00:00 2001 From: matthieu-str Date: Tue, 18 Feb 2025 14:08:28 -0500 Subject: [PATCH] corrected equations referencing --- paper.md | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/paper.md b/paper.md index ef2e2be..aaaf4c1 100644 --- a/paper.md +++ b/paper.md @@ -169,7 +169,7 @@ ESM is computed with the LCI dataset lifetime, thus resulting in the adjusted in ($lcia_{infra}^{adj}$ in Eq. (1)). $$ -lcia_{infra}^{adj}(j,k) = lcia_{infra}(j,k) \cdot \frac{n_{ESM}(j)}{n_{LCI}(j)} \quad \forall (j,k) \in TECH \times ENV \tag{1} +lcia_{infra}^{adj}(j,k) = lcia_{infra}(j,k) \cdot \frac{n_{ESM}(j)}{n_{LCI}(j)} \quad \forall (j,k) \in TECH \times ENV \quad \text{(1)} $$ - **Technologies efficiency**: Efficiencies of technologies in the ESM and LCI database should be harmonized, @@ -185,7 +185,7 @@ double-counting removal step, while the efficiency of the ESM process ($\eta_{ES is applied to a list of relevant ESM technologies (`Efficiency.csv`), e.g., technologies involving a combustion process. $$ -q^{adj}(ef, j) = q(ef, j) \cdot \frac{\eta_{LCI}(j)}{\eta_{ESM}(j)} \quad \forall (ef, j) \in EF \setminus \{\text{land, energy}\} \times TECH \tag{2} +q^{adj}(ef, j) = q(ef, j) \cdot \frac{\eta_{LCI}(j)}{\eta_{ESM}(j)} \quad \forall (ef, j) \in EF \setminus \{\text{land, energy}\} \times TECH \quad \text{(2)} $$ - **Physical units**: The product flows may be expressed in different units in the ESM and the LCI @@ -223,16 +223,16 @@ indicators of an impact category, to eventually facilitate the solver convergenc $$ \begin{split} lcia_{type,max}(k) & = \max(lcia_{type}(j,k) \ | \ j \in TECH \ \cup \ RES) \\ -& \forall type \in \{infra, op\} \quad \forall k \in ENV \tag{3} +& \forall type \in \{infra, op\} \quad \forall k \in ENV \quad \text{(3)} \end{split} $$ $$ -lcia_{infra}^{scaled}(j,k) = lcia_{infra}^{adj}(j,k) \cdot \dfrac{lcia_{op,max}(k)}{lcia_{infra,max}(k)} \forall (j,k) \in TECH \times ENV \tag{4} +lcia_{infra}^{scaled}(j,k) = lcia_{infra}^{adj}(j,k) \cdot \dfrac{lcia_{op,max}(k)}{lcia_{infra,max}(k)} \forall (j,k) \in TECH \times ENV \quad \text{(4)} $$ $$ -lcia_{max}(k) = \max(lcia_{type,max}(j,k) \ | \ type \in \{infra, op\}, \ j \in TECH) \quad \forall k \in ENV \tag{5} +lcia_{max}(k) = \max(lcia_{type,max}(j,k) \ | \ type \in \{infra, op\}, \ j \in TECH) \quad \forall k \in ENV \quad \text{(5)} $$ $$ @@ -244,7 +244,7 @@ lcia_{type}^{norm}(j,k) = \end{cases} $$ $$ -\forall (j,k) \in TECH \ \cup \ RES \times ENV \quad \forall type \in \{infra, op\} \tag{6} +\forall (j,k) \in TECH \ \cup \ RES \times ENV \quad \forall type \in \{infra, op\} \quad \text{(6)} $$ ## Equations specification @@ -261,16 +261,16 @@ with the annual operation (${F_t} \times t_{op}$) (Eq. (9)). $$ \begin{split} {LCIA_{tot}}(k) & = \sum_{j \in TECH} \left( {LCIA_{infra}}(j, k) + {LCIA_{op}}(j, k) \right) + \sum_{r \in RES} {LCIA_{op}}(r, k) \\ -& \forall k \in ENV \tag{7} +& \forall k \in ENV \quad \text{(7)} \end{split} $$ $$ -{LCIA_{infra}}(j, k) = lcia_{infra}^{norm}(j, k) \cdot {F}(j) \cdot \frac{1}{n_{ESM}(j)} \quad \forall (j, k) \in TECH \times ENV \tag{8} +{LCIA_{infra}}(j, k) = lcia_{infra}^{norm}(j, k) \cdot {F}(j) \cdot \frac{1}{n_{ESM}(j)} \quad \forall (j, k) \in TECH \times ENV \quad \text{(8)} $$ $$ -{LCIA_{op}}(j, k) = lcia_{op}^{norm}(j, k) \cdot \sum_{t \in T} {F_t}(j, t) \cdot t_{op}(t) \quad \forall (j, k) \in TECH \cup RES \times ENV \tag{9} +{LCIA_{op}}(j, k) = lcia_{op}^{norm}(j, k) \cdot \sum_{t \in T} {F_t}(j, t) \cdot t_{op}(t) \quad \forall (j, k) \in TECH \cup RES \times ENV \quad \text{(9)} $$ ## Integrating ESM results in the LCI database