Skip to content

Commit

Permalink
trying equation fix
Browse files Browse the repository at this point in the history
  • Loading branch information
matthieu-str committed Feb 18, 2025
1 parent c0eb041 commit 947d350
Showing 1 changed file with 10 additions and 22 deletions.
32 changes: 10 additions & 22 deletions paper.md
Original file line number Diff line number Diff line change
Expand Up @@ -169,9 +169,7 @@ ESM is computed with the LCI dataset lifetime, thus resulting in the adjusted in
($lcia_{infra}^{adj}$ in \autoref{eq:lcia_infra_adj}).

$$
\begin{align}\label{eq:lcia_infra_adj}
lcia_{infra}^{adj}(j,k) & = lcia_{infra}(j,k) \cdot \frac{n_{ESM}(j)}{n_{LCI}(j)} \quad \forall (j,k) \in TECH \times ENV
\end{align}
lcia_{infra}^{adj}(j,k) & = lcia_{infra}(j,k) \cdot \frac{n_{ESM}(j)}{n_{LCI}(j)} \quad \forall (j,k) \in TECH \times ENV\label{eq:lcia_infra_adj}
$$

- **Technologies efficiency**: Efficiencies of technologies in the ESM and LCI database should be harmonized,
Expand All @@ -187,9 +185,7 @@ double-counting removal step, while the efficiency of the ESM process ($\eta_{ES
is applied to a list of relevant ESM technologies (`Efficiency.csv`), e.g., technologies involving a combustion process.

$$
\begin{align}\label{eq:q_adj}
q^{adj}(ef, j) & = q(ef, j) \cdot \frac{\eta_{LCI}(j)}{\eta_{ESM}(j)} \quad \forall (ef, j) \in EF \setminus \{\text{land, energy}\} \times TECH
\end{align}
q^{adj}(ef, j) & = q(ef, j) \cdot \frac{\eta_{LCI}(j)}{\eta_{ESM}(j)} \quad \forall (ef, j) \in EF \setminus \{\text{land, energy}\} \times TECH\label{eq:q_adj}
$$

- **Physical units**: The product flows may be expressed in different units in the ESM and the LCI
Expand Down Expand Up @@ -232,22 +228,18 @@ lcia_{type,max}(k) & = \max(lcia_{type}(j,k) \ | \ j \in TECH \ \cup \ RES) \\
$$

$$
\begin{align}\label{eq:lcia_infra_scaled}
lcia_{infra}^{scaled}(j,k) & = lcia_{infra}^{adj}(j,k) \cdot \dfrac{lcia_{op,max}(k)}{lcia_{infra,max}(k)} \forall (j,k) \in TECH \times ENV
\end{align}
lcia_{infra}^{scaled}(j,k) & = lcia_{infra}^{adj}(j,k) \cdot \dfrac{lcia_{op,max}(k)}{lcia_{infra,max}(k)} \forall (j,k) \in TECH \times ENV\label{eq:lcia_infra_scaled}
$$

$$
\begin{align}\label{eq:lcia_max}
lcia_{max}(k) & = \max(lcia_{type,max}(j,k) \ | \ type \in \{infra, op\}, \ j \in TECH) \quad \forall k \in ENV
\end{align}
lcia_{max}(k) & = \max(lcia_{type,max}(j,k) \ | \ type \in \{infra, op\}, \ j \in TECH) \quad \forall k \in ENV\label{eq:lcia_max}
$$

$$
lcia_{type}^{norm}(j,k) =
\begin{cases}\label{eq:lcia_type_norm}
\begin{cases}
0 \text{ if } \dfrac{lcia_{type}^{(scaled)}(j,k)}{lcia_{max}(k)} \leq \epsilon \\
\dfrac{lcia_{type}^{(scaled)}(j,k)}{lcia_{max}(k)} \cdot \dfrac{lcia_{infra,max}(k)}{lcia_{op,max}(k)} \text{ elif } type = infra \\
\dfrac{lcia_{type}^{(scaled)}(j,k)}{lcia_{max}(k)} \cdot \dfrac{lcia_{infra,max}(k)}{lcia_{op,max}(k)} \text{ elif } type = infra\label{eq:lcia_type_norm} \\
\dfrac{lcia_{type}^{(scaled)}(j,k)}{lcia_{max}(k)} \text{ else}
\end{cases}
$$
Expand All @@ -267,22 +259,18 @@ impacts ($lcia^{norm}_{op}$), which are respectively computed from the operation
with the annual operation (${F_t} \times t_{op}$) (\autoref{eq:lcia_op}).

$$
\begin{split}\label{eq:lcia_tot}
{LCIA_{tot}}(k) & = \sum_{j \in TECH} \left( {LCIA_{infra}}(j, k) + {LCIA_{op}}(j, k) \right) + \sum_{r \in RES} {LCIA_{op}}(r, k) \\
\begin{split}
{LCIA_{tot}}(k) & = \sum_{j \in TECH} \left( {LCIA_{infra}}(j, k) + {LCIA_{op}}(j, k) \right) + \sum_{r \in RES} {LCIA_{op}}(r, k)\label{eq:lcia_tot} \\
& \forall k \in ENV
\end{split}
$$

$$
\begin{align}\label{eq:lcia_infra}
{LCIA_{infra}}(j, k) & = lcia_{infra}^{norm}(j, k) \cdot {F}(j) \cdot \frac{1}{n_{ESM}(j)} \quad \forall (j, k) \in TECH \times ENV
\end{align}
{LCIA_{infra}}(j, k) & = lcia_{infra}^{norm}(j, k) \cdot {F}(j) \cdot \frac{1}{n_{ESM}(j)} \quad \forall (j, k) \in TECH \times ENV\label{eq:lcia_infra}
$$

$$
\begin{align}\label{eq:lcia_op}
{LCIA_{op}}(j, k) & = lcia_{op}^{norm}(j, k) \cdot \sum_{t \in T} {F_t}(j, t) \cdot t_{op}(t) \quad \forall (j, k) \in TECH \cup RES \times ENV
\end{align}
{LCIA_{op}}(j, k) & = lcia_{op}^{norm}(j, k) \cdot \sum_{t \in T} {F_t}(j, t) \cdot t_{op}(t) \quad \forall (j, k) \in TECH \cup RES \times ENV\label{eq:lcia_op}
$$

## Integrating ESM results in the LCI database
Expand Down

0 comments on commit 947d350

Please sign in to comment.