From 947d3500506dd66b8db5a30443b4bc184aae37a4 Mon Sep 17 00:00:00 2001 From: matthieu-str Date: Mon, 17 Feb 2025 20:36:07 -0500 Subject: [PATCH] trying equation fix --- paper.md | 32 ++++++++++---------------------- 1 file changed, 10 insertions(+), 22 deletions(-) diff --git a/paper.md b/paper.md index f4c3298..2040711 100644 --- a/paper.md +++ b/paper.md @@ -169,9 +169,7 @@ ESM is computed with the LCI dataset lifetime, thus resulting in the adjusted in ($lcia_{infra}^{adj}$ in \autoref{eq:lcia_infra_adj}). $$ -\begin{align}\label{eq:lcia_infra_adj} -lcia_{infra}^{adj}(j,k) & = lcia_{infra}(j,k) \cdot \frac{n_{ESM}(j)}{n_{LCI}(j)} \quad \forall (j,k) \in TECH \times ENV -\end{align} +lcia_{infra}^{adj}(j,k) & = lcia_{infra}(j,k) \cdot \frac{n_{ESM}(j)}{n_{LCI}(j)} \quad \forall (j,k) \in TECH \times ENV\label{eq:lcia_infra_adj} $$ - **Technologies efficiency**: Efficiencies of technologies in the ESM and LCI database should be harmonized, @@ -187,9 +185,7 @@ double-counting removal step, while the efficiency of the ESM process ($\eta_{ES is applied to a list of relevant ESM technologies (`Efficiency.csv`), e.g., technologies involving a combustion process. $$ -\begin{align}\label{eq:q_adj} -q^{adj}(ef, j) & = q(ef, j) \cdot \frac{\eta_{LCI}(j)}{\eta_{ESM}(j)} \quad \forall (ef, j) \in EF \setminus \{\text{land, energy}\} \times TECH -\end{align} +q^{adj}(ef, j) & = q(ef, j) \cdot \frac{\eta_{LCI}(j)}{\eta_{ESM}(j)} \quad \forall (ef, j) \in EF \setminus \{\text{land, energy}\} \times TECH\label{eq:q_adj} $$ - **Physical units**: The product flows may be expressed in different units in the ESM and the LCI @@ -232,22 +228,18 @@ lcia_{type,max}(k) & = \max(lcia_{type}(j,k) \ | \ j \in TECH \ \cup \ RES) \\ $$ $$ -\begin{align}\label{eq:lcia_infra_scaled} -lcia_{infra}^{scaled}(j,k) & = lcia_{infra}^{adj}(j,k) \cdot \dfrac{lcia_{op,max}(k)}{lcia_{infra,max}(k)} \forall (j,k) \in TECH \times ENV -\end{align} +lcia_{infra}^{scaled}(j,k) & = lcia_{infra}^{adj}(j,k) \cdot \dfrac{lcia_{op,max}(k)}{lcia_{infra,max}(k)} \forall (j,k) \in TECH \times ENV\label{eq:lcia_infra_scaled} $$ $$ -\begin{align}\label{eq:lcia_max} -lcia_{max}(k) & = \max(lcia_{type,max}(j,k) \ | \ type \in \{infra, op\}, \ j \in TECH) \quad \forall k \in ENV -\end{align} +lcia_{max}(k) & = \max(lcia_{type,max}(j,k) \ | \ type \in \{infra, op\}, \ j \in TECH) \quad \forall k \in ENV\label{eq:lcia_max} $$ $$ lcia_{type}^{norm}(j,k) = -\begin{cases}\label{eq:lcia_type_norm} +\begin{cases} 0 \text{ if } \dfrac{lcia_{type}^{(scaled)}(j,k)}{lcia_{max}(k)} \leq \epsilon \\ - \dfrac{lcia_{type}^{(scaled)}(j,k)}{lcia_{max}(k)} \cdot \dfrac{lcia_{infra,max}(k)}{lcia_{op,max}(k)} \text{ elif } type = infra \\ + \dfrac{lcia_{type}^{(scaled)}(j,k)}{lcia_{max}(k)} \cdot \dfrac{lcia_{infra,max}(k)}{lcia_{op,max}(k)} \text{ elif } type = infra\label{eq:lcia_type_norm} \\ \dfrac{lcia_{type}^{(scaled)}(j,k)}{lcia_{max}(k)} \text{ else} \end{cases} $$ @@ -267,22 +259,18 @@ impacts ($lcia^{norm}_{op}$), which are respectively computed from the operation with the annual operation (${F_t} \times t_{op}$) (\autoref{eq:lcia_op}). $$ -\begin{split}\label{eq:lcia_tot} -{LCIA_{tot}}(k) & = \sum_{j \in TECH} \left( {LCIA_{infra}}(j, k) + {LCIA_{op}}(j, k) \right) + \sum_{r \in RES} {LCIA_{op}}(r, k) \\ +\begin{split} +{LCIA_{tot}}(k) & = \sum_{j \in TECH} \left( {LCIA_{infra}}(j, k) + {LCIA_{op}}(j, k) \right) + \sum_{r \in RES} {LCIA_{op}}(r, k)\label{eq:lcia_tot} \\ & \forall k \in ENV \end{split} $$ $$ -\begin{align}\label{eq:lcia_infra} -{LCIA_{infra}}(j, k) & = lcia_{infra}^{norm}(j, k) \cdot {F}(j) \cdot \frac{1}{n_{ESM}(j)} \quad \forall (j, k) \in TECH \times ENV -\end{align} +{LCIA_{infra}}(j, k) & = lcia_{infra}^{norm}(j, k) \cdot {F}(j) \cdot \frac{1}{n_{ESM}(j)} \quad \forall (j, k) \in TECH \times ENV\label{eq:lcia_infra} $$ $$ -\begin{align}\label{eq:lcia_op} -{LCIA_{op}}(j, k) & = lcia_{op}^{norm}(j, k) \cdot \sum_{t \in T} {F_t}(j, t) \cdot t_{op}(t) \quad \forall (j, k) \in TECH \cup RES \times ENV -\end{align} +{LCIA_{op}}(j, k) & = lcia_{op}^{norm}(j, k) \cdot \sum_{t \in T} {F_t}(j, t) \cdot t_{op}(t) \quad \forall (j, k) \in TECH \cup RES \times ENV\label{eq:lcia_op} $$ ## Integrating ESM results in the LCI database