-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdouble_agent.py
751 lines (623 loc) · 31.2 KB
/
double_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.autograd import Variable
import numpy as np
from random import random, randrange
from collections import namedtuple
from datetime import datetime
import pickle
import os
from environment import Environment
from twin_dqn import TwinDQN
from replaymemory import ReplayMemory
# if gpu is to be used
use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor
Transition = namedtuple('Transition', ('state','action','next_state','reward'))
def gray2pytorch(img):
return torch.from_numpy(img[:,:,None].transpose(2, 0, 1)).unsqueeze(0)
# dimensions: tuple (h1,h2,w1,w2) with dimensions of the game (to crop borders)
dimensions = {'Breakout': (32, 195, 8, 152),
'SpaceInvaders': (21, 195, 20, 141),
'Assault': (50, 240, 5, 155),
'Phoenix': (23, 183, 0, 160),
'Skiing': (55, 202, 8, 152),
'Enduro': (50, 154, 8, 160),
'BeamRider': (32, 180, 9, 159),
}
game_name = {'Breakout': 'BreakoutNoFrameskip-v4',
'SpaceInvaders': 'SpaceInvadersNoFrameskip-v4',
'Assault': 'AssaultNoFrameskip-v4',
'Phoenix': 'PhoenixNoFrameskip-v4',
'Skiing': 'SkiingNoFrameskip-v4',
'Enduro': 'EnduroNoFrameskip-v4',
'BeamRider': 'BeamRiderNoFrameskip-v4',
}
class DoubleAgent(object):
def __init__(self,
game1,
game2,
mem_size = 1000000,
state_buffer_size = 4,
batch_size = 64,
learning_rate = 1e-5,
pretrained_model = None,
pretrained_subnet1 = False,
pretrained_subnet2 = False,
frameskip = 4,
frozen = False
):
"""
Inputs:
- game 1: string to select the game 1
- game 2: string to select the game 2
- mem_size: int length of the replay memory
- state_buffer_size: int number of recent frames used as input for neural network
- batch_size: int
- learning_rate: float
- pretrained_model: str path to the model
- pretrained_subnet1: str path to the model of the subnet
- pretrained_subnet2: str path to the model of the subnet
- frozen: boolean freeze pretrained subnets
"""
# Namestring
self.game1 = game1
self.game2 = game2
# Environment
self.env1 = Environment(game_name[game1], dimensions[game1], frameskip=frameskip)
self.env2 = Environment(game_name[game2], dimensions[game2], frameskip=frameskip)
# Neural net
self.pretrained_subnet1 = pretrained_subnet1
self.pretrained_subnet2 = pretrained_subnet2
self.net = TwinDQN(channels_in = state_buffer_size,
num_actions = self.env2.get_number_of_actions(),
pretrained_subnet1 = pretrained_subnet1,
pretrained_subnet2 = pretrained_subnet2,
frozen = frozen)
self.target_net = TwinDQN(channels_in = state_buffer_size,
num_actions = self.env2.get_number_of_actions(),
pretrained_subnet1 = pretrained_subnet1,
pretrained_subnet2 = pretrained_subnet2,
frozen = frozen)
# Cuda
self.use_cuda = torch.cuda.is_available()
if self.use_cuda:
self.net.cuda()
self.target_net.cuda()
# Pretrained
if pretrained_model:
self.net.load(pretrained_model)
self.target_net.load(pretrained_model)
self.pretrained_model = True
else:
self.pretrained_model = False
# Optimizer
self.learning_rate = learning_rate
self.optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.net.parameters()),
lr=learning_rate)
#self.optimizer = optim.RMSprop(filter(lambda p: p.requires_grad, self.net.parameters()),
# lr=learning_rate,alpha=0.95, eps=0.01)
self.batch_size = batch_size
self.optimize_each_k = 1
self.update_target_net_each_k_steps = 10000
self.noops_count = 0
# Replay Memory (Long term memory)
self.replay = ReplayMemory(capacity=mem_size, num_history_frames=state_buffer_size)
self.mem_size = mem_size
# Fill replay memory before training
if not self.pretrained_model:
self.start_train_after = 50000
else:
self.start_train_after = mem_size//2
# Buffer for the most recent states (Short term memory)
self.num_stored_frames = state_buffer_size
# Steps
self.steps = 0
# Save net
self.save_net_each_k_episodes = 500
def select_action(self, observation, mode='train'):
"""
Select an random action from action space or an proposed action
from neural network depending on epsilon
Inputs:
- observation: np.array with the observation
Returns:
- action: int
"""
# Hyperparameters
EPSILON_START = 1
EPSILON_END = 0.1
EPSILON_DECAY = 1000000
EPSILON_PLAY = 0.01
MAXNOOPS = 30
# Decrease of epsilon value
if not self.pretrained_model:
#epsilon = EPSILON_END + (EPSILON_START - EPSILON_END) * \
# np.exp(-1. * (self.steps-self.batch_size) / EPSILON_DECAY)
epsilon = EPSILON_START - self.steps * (EPSILON_START - EPSILON_END) / EPSILON_DECAY
elif mode=='play':
epsilon = EPSILON_PLAY
else:
epsilon = EPSILON_END
if epsilon < random():
# Action according to neural net
# Wrap tensor into variable
state_variable = Variable(observation, volatile=True)
# Evaluate network and return action with maximum of activation
action = self.net(state_variable).data.max(1)[1].view(1,1)
# Prevent noops
if action[0,0]!=1:
self.noops_count += 1
if self.noops_count == MAXNOOPS:
action[0,0] = 1
self.noops_count = 0
else:
self.noops_count = 0
else:
# Random action
action = self.env2.sample_action()
action = LongTensor([[action]])
return action
def map_action(self, action):
"""
Maps action from game with more actions
to game with less actions
Inputs:
- action: int
Returns:
- action: int
"""
# Map SpaceInvaders on Breakout
if self.game1=='Breakout' and self.game2=='SpaceInvaders':
if action>3: # shoot+right/left --> right/left
return action-2
# Map Assault on SpaceInvaders
if self.game1=='SpaceInvaders' and self.game2=='Assault':
if action!=0: # all actions except 2nd idle
return action-1
# Map Phoenix on SpaceInvaders
if self.game1=='SpaceInvaders' and self.game2=='Phoenix':
if action==4: # shield --> idle
return 0
if action==7: # shield+shot --> shot
return 1
if action>4: # shoot+right/left --> shoot+right/left
return action-1
# Map Phoenix on Assault
if self.game1=='Assault' and self.game2=='Phoenix':
if action==4: # shield --> idle
return 0
if action==7: # shield+shot --> shot
return 2
if 1<= action and action<=3: # shot/right/left --> shot/right/left
return action+1
# No mapping necessary
return action
def optimize(self, net_updates):
"""
Optimizer function
Inputs:
- net_updates: int
Returns:
- loss: float
- q_value: float
- exp_q_value: float
"""
# Hyperparameter
GAMMA = 0.99
# not enough memory yet
if len(self.replay) < self.start_train_after:
return
# Sample a transition
batch = self.replay.sampleTransition(self.batch_size)
# Mask to indicate which states are not final (=done=game over)
non_final_mask = ByteTensor(list(map(lambda ns: ns is not None, batch.next_state)))
# Wrap tensors in variables
state_batch = Variable(torch.cat(batch.state))
action_batch = Variable(torch.cat(batch.action))
reward_batch = Variable(torch.cat(batch.reward))
non_final_next_states = Variable(torch.cat([ns for ns in batch.next_state if ns is not None]),
volatile=True) # volatile==true prevents calculation of the derivative
next_state_values = Variable(torch.zeros(self.batch_size).type(FloatTensor), volatile=False)
if self.use_cuda:
state_batch = state_batch.cuda()
action_batch = action_batch.cuda()
reward_batch = reward_batch.cuda()
non_final_mask = non_final_mask.cuda()
non_final_next_states = non_final_next_states.cuda()
next_state_values = next_state_values.cuda()
# Compute Q(s_t, a) - the self.net computes Q(s_t), then we select the
# columns of actions taken
state_action_values = self.net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
next_max_values = self.target_net(non_final_next_states).detach().max(1)[0]
next_state_values[non_final_mask]= next_max_values
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values, expected_state_action_values)
self.optimizer.zero_grad()
loss.backward()
for param in self.net.parameters():
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
if net_updates%self.update_target_net_each_k_steps==0:
self.target_net.load_state_dict(self.net.state_dict())
print('target_net update!')
return loss.data.cpu().numpy()[0]
def play(self, n):
"""
Play a game with the current net and render it
Inputs:
- n: games to play
"""
for i in range(n):
done = False # games end indicator variable
# Score counter
total_reward_game1 = 0
total_reward_game2 = 0
total_reward = 0
# Reset game
screen1 = self.env1.reset()
screen2 = self.env2.reset()
# list of k last frames
last_k_frames = []
for j in range(self.num_stored_frames):
last_k_frames.append(None)
last_k_frames[j] = torch.cat((gray2pytorch(screen1),gray2pytorch(screen2)),dim=1)
# frame is saved as ByteTensor -> convert to gray value between 0 and 1
state = torch.cat(last_k_frames,1).type(FloatTensor)/255.0
while not done:
action = self.select_action(state, mode='play')[0,0]
action1 = self.map_action(action)
action2 = action
# perform selected action on game
screen1, reward1, _, done1, _ = self.env1.step(action1, mode='play')
screen2, reward2, _, done2, _ = self.env2.step(action2, mode='play')
# Logging
total_reward_game1 += int(reward1)
total_reward_game2 += int(reward2)
total_reward += int(reward1) + int(reward2)
# save latest frame, discard oldest
for j in range(self.num_stored_frames-1):
last_k_frames[j] = last_k_frames[j+1]
last_k_frames[self.num_stored_frames-1] = torch.cat((gray2pytorch(screen1),gray2pytorch(screen2)),dim=1)
# convert frames to range 0 to 1 again
state = torch.cat(last_k_frames,1).type(FloatTensor)/255.0
# Merged game over indicator
done = done1 or done2
print('Final scores Game ({}/{}): {}: {} '.format(i+1, n, self.game1, total_reward_game1) +
'{}: {} '.format(self.game2, total_reward_game2) +
'total: {}'.format(total_reward))
self.env1.game.close()
self.env2.game.close()
def play_stats(self, n_games, mode='random'):
"""
Play N games randomly or evaluate a net and log results for statistics
Input:
- n_games: int Number of games to play
- mode: str 'random' or 'evaluation'
"""
# Subdirectory for logging
sub_dir = mode + '_' + self.game1 + '+' + self.game2 + '/'
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
# Store history total
reward_history = []
reward_clamped_history = []
# Store history game 1
reward_history_game1 = []
reward_clamped_history_game1 = []
# Store history game 2
reward_history_game2 = []
reward_clamped_history_game2 = []
# Number of actions to sample from
n_actions = self.env2.get_number_of_actions()
for i_episode in range(1, n_games+1):
# Reset game
screen1 = self.env1.reset()
screen2 = self.env2.reset()
# Store screen
if mode=='evaluation':
# list of k last frames
last_k_frames = []
for j in range(self.num_stored_frames):
last_k_frames.append(None)
last_k_frames[j] = torch.cat((gray2pytorch(screen1),gray2pytorch(screen2)),dim=1)
# frame is saved as ByteTensor -> convert to gray value between 0 and 1
state = torch.cat(last_k_frames,1).type(FloatTensor)/255.0
# games end indicator variable
done = False
# reset score with initial lives, because every lost live adds -1
total_reward_game1 = 0
total_reward_clamped_game1 = self.env1.get_lives()
total_reward_game2 = 0
total_reward_clamped_game2 = self.env2.get_lives()
# total scores for both games
total_reward = total_reward_game1 + total_reward_game2
total_reward_clamped = total_reward_clamped_game1 + total_reward_clamped_game2
while not done:
if mode=='random':
action = randrange(n_actions)
elif mode=='evaluation':
action = self.select_action(state, mode='play')[0,0]
action1 = self.map_action(action)
action2 = action
screen1, reward1, reward1_clamped, done1, _ = self.env1.step(action1)
screen2, reward2, reward2_clamped, done2, _ = self.env2.step(action2)
# Logging
total_reward_game1 += int(reward1)
total_reward_game2 += int(reward2)
total_reward += int(reward1) + int(reward2)
total_reward_clamped_game1 += reward1_clamped
total_reward_clamped_game2 += reward2_clamped
total_reward_clamped += reward1_clamped + reward2_clamped
if mode=='evaluation':
# save latest frame, discard oldest
for j in range(self.num_stored_frames-1):
last_k_frames[j] = last_k_frames[j+1]
last_k_frames[self.num_stored_frames-1] = torch.cat((gray2pytorch(screen1),gray2pytorch(screen2)),dim=1)
# convert frames to range 0 to 1 again
state = torch.cat(last_k_frames,1).type(FloatTensor)/255.0
# Merged game over indicator
done = done1 or done2
# Print current result
print('Episode: {:6}/{:6} | '.format(i_episode, n_games) +
'score total: ({:6.1f}/{:7.1f}) | '.format(total_reward_clamped,total_reward) +
'score game1: ({:6.1f}/{:7.1f}) | '.format(total_reward_clamped_game1,total_reward_game1) +
'score game2: ({:6.1f}/{:7.1f})'.format(total_reward_clamped_game2,total_reward_game2))
# Save rewards
reward_history_game1.append(total_reward_game1)
reward_history_game2.append(total_reward_game2)
reward_history.append(total_reward)
reward_clamped_history_game1.append(total_reward_clamped_game1)
reward_clamped_history_game2.append(total_reward_clamped_game2)
reward_clamped_history.append(total_reward_clamped)
avg_reward_total = np.sum(reward_history) / len(reward_history)
avg_reward_total_clamped = np.sum(reward_clamped_history) / len(reward_clamped_history)
avg_reward_game1 = np.sum(reward_history_game1) / len(reward_history_game1)
avg_reward_game1_clamped = np.sum(reward_clamped_history_game1) / len(reward_clamped_history_game1)
avg_reward_game2 = np.sum(reward_history_game2) / len(reward_history_game2)
avg_reward_game2_clamped = np.sum(reward_clamped_history_game2) / len(reward_clamped_history_game2)
# Print final result
print('\n\n===========================================\n' +
'avg score after {:6} episodes:\n'.format(n_games) +
'avg total: ({:6.1f}/{:7.1f})\n'.format(avg_reward_total_clamped,avg_reward_total) +
'avg game1: ({:6.1f}/{:7.1f})\n'.format(avg_reward_game1_clamped,avg_reward_game1) +
'avg game2: ({:6.1f}/{:7.1f})\n'.format(avg_reward_game2_clamped,avg_reward_game2))
# Log results to files
with open(sub_dir + mode + '.txt', 'w') as fp:
fp.write('avg score after {:6} episodes:\n'.format(n_games) +
'avg total: ({:6.1f}/{:7.1f})\n'.format(avg_reward_total_clamped,avg_reward_total) +
'avg game1: ({:6.1f}/{:7.1f})\n'.format(avg_reward_game1_clamped,avg_reward_game1) +
'avg game2: ({:6.1f}/{:7.1f})\n'.format(avg_reward_game2_clamped,avg_reward_game2))
# Dump reward
with open(sub_dir + mode + '_reward_game1.pickle', 'wb') as fp:
pickle.dump(reward_history_game1, fp)
with open(sub_dir + mode + '_reward_game2.pickle', 'wb') as fp:
pickle.dump(reward_history_game2, fp)
with open(sub_dir + mode + '_reward_total.pickle', 'wb') as fp:
pickle.dump(reward_history, fp)
with open(sub_dir + mode + '_reward_clamped_game1', 'wb') as fp:
pickle.dump(reward_clamped_history_game1, fp)
with open(sub_dir + mode + '_reward_clamped_game2', 'wb') as fp:
pickle.dump(reward_clamped_history_game2, fp)
with open(sub_dir + mode + '_reward_clamped_total', 'wb') as fp:
pickle.dump(reward_clamped_history, fp)
def train(self):
"""
Train the agent
"""
num_episodes = 100000
net_updates = 0
# Logging
sub_dir = self.game1 + '+' + self.game2 + '_' + datetime.now().strftime('%Y%m%d_%H%M%S') + '/'
os.makedirs(sub_dir)
logfile = sub_dir + 'train.txt'
reward_file = sub_dir + 'reward.pickle'
reward_file_game1 = sub_dir + 'reward_game1.pickle'
reward_file_game2 = sub_dir + 'reward_game2.pickle'
reward_clamped_file = sub_dir + 'reward_clamped.pickle'
reward_clamped_file_game1 = sub_dir + 'reward_clamped_game1.pickle'
reward_clamped_file_game2 = sub_dir + 'reward_clamped_game2.pickle'
reward_clamped_file = sub_dir + 'reward_clamped.pickle'
log_avg_episodes = 50
# Total scores
best_score = 0
best_score_clamped = 0
avg_score = 0
avg_score_clamped = 0
reward_history = []
reward_clamped_history = []
# Scores game 1
avg_score_game1 = 0
avg_score_clamped_game1 = 0
reward_history_game1 = []
reward_clamped_history_game1 = []
# Scores game 2
avg_score_game2 = 0
avg_score_clamped_game2 = 0
reward_history_game2 = []
reward_clamped_history_game2 = []
# Initialize logfile with header
with open(logfile, 'w') as fp:
fp.write(datetime.now().strftime('%Y-%m-%d %H:%M:%S') + '\n' +
'Trained game (first): {}\n'.format(self.game1) +
'Trained game (second): {}\n'.format(self.game2) +
'Learning rate: {:.2E}\n'.format(self.learning_rate) +
'Batch size: {:d}\n'.format(self.batch_size) +
'Memory size(replay): {:d}\n'.format(self.mem_size) +
'Pretrained: {}\n'.format(self.pretrained_model) +
'Pretrained subnet 1: {}\n'.format(self.pretrained_subnet1) +
'Pretrained subnet 2: {}\n'.format(self.pretrained_subnet2) +
'Started training after k frames: {:d}\n'.format(self.start_train_after) +
'Optimized after k frames: {:d}\n'.format(self.optimize_each_k) +
'Target net update after k frame: {:d}\n\n'.format(self.update_target_net_each_k_steps) +
'--------+-----------+----------------------+------------' +
'----------+----------------------+--------------------\n' +
'Episode | Steps | ' +
'{:3} games avg total | '.format(log_avg_episodes) +
'{:3} games avg game1 | '.format(log_avg_episodes) +
'{:3} games avg game2 | '.format(log_avg_episodes) +
'best score total \n' +
'--------+-----------+----------------------+------------' +
'----------+----------------------+--------------------\n')
print('Started training...\nLogging to {}\n'.format(sub_dir) +
'Episode | Steps | score total | score game 1 | ' +
'score game 2 | best score total')
for i_episode in range(1,num_episodes):
# reset game at the start of each episode
screen1 = self.env1.reset()
screen2 = self.env2.reset()
# list of k last frames
last_k_frames = []
for j in range(self.num_stored_frames):
last_k_frames.append(None)
last_k_frames[j] = torch.cat((gray2pytorch(screen1),
gray2pytorch(screen2)), dim=1)
if i_episode == 1:
self.replay.pushFrame(last_k_frames[0].cpu())
# frame is saved as ByteTensor -> convert to gray value between 0 and 1
state = torch.cat(last_k_frames,1).type(FloatTensor)/255.0
# games end indicator variable
done1 = False
done2 = False
# reset score with initial lives, because every lost live adds -1
total_reward_game1 = 0
total_reward_clamped_game1 = self.env1.get_lives()
total_reward_game2 = 0
total_reward_clamped_game2 = self.env2.get_lives()
# total scores for both games
total_reward = total_reward_game1 + total_reward_game2
total_reward_clamped = total_reward_clamped_game1 + total_reward_clamped_game2
# Loop over one game
while not done1 and not done2:
self.steps +=1
action = self.select_action(state)
action1 = self.map_action(action[0,0])
action2 = action[0,0]
# perform selected action on game
screen1, reward1, reward1_clamped, done1, _ = self.env1.step(action1)
screen2, reward2, reward2_clamped, done2, _ = self.env2.step(action2)
# Logging
total_reward_game1 += int(reward1)
total_reward_game2 += int(reward2)
total_reward += int(reward1) + int(reward2)
total_reward_clamped_game1 += reward1_clamped
total_reward_clamped_game2 += reward2_clamped
total_reward_clamped += reward1_clamped + reward2_clamped
# Bake reward into tensor
reward = torch.FloatTensor([reward1_clamped+reward2_clamped])
# save latest frame, discard oldest
for j in range(self.num_stored_frames-1):
last_k_frames[j] = last_k_frames[j+1]
last_k_frames[self.num_stored_frames-1] = torch.cat((gray2pytorch(screen1),
gray2pytorch(screen2)), dim=1)
# convert frames to range 0 to 1 again
if not done1 and not done2:
next_state = torch.cat(last_k_frames,1).type(FloatTensor)/255.0
else:
next_state = None
# Store transition
self.replay.pushFrame(last_k_frames[self.num_stored_frames - 1].cpu())
self.replay.pushTransition((self.replay.getCurrentIndex()-1)%self.replay.capacity,
action, reward, done1 or done2)
# only optimize each kth step
if self.steps%self.optimize_each_k == 0:
self.optimize(net_updates)
net_updates += 1
# set current state to next state to select next action
if next_state is not None:
state = next_state
if self.use_cuda:
state = state.cuda()
# plays episode until there are no more lives left ( == done)
if done1 or done2:
break;
# Save rewards
reward_history_game1.append(total_reward_game1)
reward_history_game2.append(total_reward_game2)
reward_history.append(total_reward)
reward_clamped_history_game1.append(total_reward_clamped_game1)
reward_clamped_history_game2.append(total_reward_clamped_game2)
reward_clamped_history.append(total_reward_clamped)
# Sum up for averages
avg_score_clamped_game1 += total_reward_clamped_game1
avg_score_clamped_game2 += total_reward_clamped_game2
avg_score_clamped += total_reward_clamped
avg_score_game1 += total_reward_game1
avg_score_game2 += total_reward_game2
avg_score += total_reward
if total_reward_clamped > best_score_clamped:
best_score_clamped = total_reward_clamped
if total_reward > best_score:
best_score = total_reward
print('{:7} | '.format(i_episode) +
'{:9} | '.format(self.steps) +
'({:6.1f}/{:7.1f}) | '.format(total_reward_clamped,total_reward) +
'({:6.1f}/{:7.1f}) | '.format(total_reward_clamped_game1,total_reward_game1) +
'({:6.1f}/{:7.1f}) | '.format(total_reward_clamped_game2,total_reward_game2) +
'({:6.1f}/{:8.1f})'.format(best_score_clamped, best_score))
if i_episode % log_avg_episodes == 0 and i_episode!=0:
avg_score_clamped_game1 /= log_avg_episodes
avg_score_clamped_game2 /= log_avg_episodes
avg_score_clamped /= log_avg_episodes
avg_score_game1 /= log_avg_episodes
avg_score_game2 /= log_avg_episodes
avg_score /= log_avg_episodes
print('--------+-----------+----------------------+------------' +
'----------+----------------------+--------------------\n' +
'Episode | Steps | ' +
'{:3} games avg total | '.format(log_avg_episodes) +
'{:3} games avg game1 | '.format(log_avg_episodes) +
'{:3} games avg game2 | '.format(log_avg_episodes) +
'best score total \n' +
'{:7} | '.format(i_episode) +
'{:9} | '.format(self.steps) +
'({:6.1f}/{:7.1f}) | '.format(avg_score_clamped,avg_score) +
'({:6.1f}/{:7.1f}) | '.format(avg_score_clamped_game1,avg_score_game1) +
'({:6.1f}/{:7.1f}) | '.format(avg_score_clamped_game2,avg_score_game2) +
'({:6.1f}/{:8.1f})\n'.format(best_score_clamped, best_score) +
'\nLogging to file...\n\n'
'--------+-----------+----------------------+------------' +
'----------+----------------------+--------------------\n' +
'Episode | Steps | score total | score game 1 | ' +
'score game 2 | best score total')
# Logfile
with open(logfile, 'a') as fp:
fp.write('{:7} | '.format(i_episode) +
'{:9} | '.format(self.steps) +
'({:6.1f}/{:7.1f}) | '.format(avg_score_clamped,avg_score) +
'({:6.1f}/{:7.1f}) | '.format(avg_score_clamped_game1,avg_score_game1) +
'({:6.1f}/{:7.1f}) | '.format(avg_score_clamped_game2,avg_score_game2) +
'({:6.1f}/{:8.1f})\n'.format(best_score_clamped, best_score))
# Dump reward
with open(reward_file_game1, 'wb') as fp:
pickle.dump(reward_history_game1, fp)
with open(reward_file_game2, 'wb') as fp:
pickle.dump(reward_history_game2, fp)
with open(reward_file, 'wb') as fp:
pickle.dump(reward_history, fp)
with open(reward_clamped_file_game1, 'wb') as fp:
pickle.dump(reward_clamped_history_game1, fp)
with open(reward_clamped_file_game2, 'wb') as fp:
pickle.dump(reward_clamped_history_game2, fp)
with open(reward_clamped_file, 'wb') as fp:
pickle.dump(reward_clamped_history, fp)
avg_score_clamped_game1 = 0
avg_score_clamped_game2 = 0
avg_score_clamped = 0
avg_score_game1 = 0
avg_score_game2 = 0
avg_score = 0
if i_episode % self.save_net_each_k_episodes == 0:
with open(logfile, 'a') as fp:
fp.write('Saved model at episode ' + str(i_episode) + '...\n')
self.target_net.save(sub_dir + str(i_episode) + '_episodes.model')
print('Training done!')
self.target_net.save(sub_dir + 'final.model')