-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathupdate_consumer_stats.py
400 lines (371 loc) · 14.5 KB
/
update_consumer_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import json
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Union
import pandas as pd
from packaging.version import InvalidVersion, Version
import utils
POLICIES = {
0: "none",
1: "manylinux1",
2: "manylinux2010",
3: "manylinux2014",
4: "manylinux_2_17",
5: "manylinux_2_26",
6: "manylinux_2_27",
7: "manylinux_2_28",
8: "manylinux_2_31",
9: "manylinux_2_34",
10: "manylinux_2_35",
11: "manylinux_2_36",
12: "manylinux_2_39",
}
PYTHON_EOL = {
"3.6": pd.to_datetime("2021-12-23"),
"3.7": pd.to_datetime("2023-06-27"),
"3.8": pd.to_datetime("2024-10-07"),
"3.9": pd.to_datetime("2025-10-05"),
"3.10": pd.to_datetime("2026-10-04"),
"3.11": pd.to_datetime("2027-10-24"),
"3.12": pd.to_datetime("2028-10-04"),
"3.13": pd.to_datetime("2029-10-01"),
"3.14": pd.to_datetime("2030-10-01"),
}
def _get_major_minor(x):
try:
version = Version(x)
except InvalidVersion:
return "0.0"
if version.major > 50:
return "0.0" # invalid version
return f"{version.major}.{version.minor}"
def _load_df(path: Path, date: datetime) -> pd.DataFrame | None:
folder = path / date.strftime("%Y") / date.strftime("%m")
file = folder / f"{date.strftime('%d')}.csv"
if not file.exists():
return None
df = pd.read_csv(
file,
converters={
"python_version": lambda x: _get_major_minor(x),
"pip_version": lambda x: _get_major_minor(x),
"glibc_version": lambda x: _get_major_minor(x),
},
)
df["day"] = pd.to_datetime(date)
# remove unneeded python version
df.query("python_version in @PYTHON_EOL", inplace=True)
return df
def update(path: Path, start: datetime, end: datetime):
date_ = start - utils.CONSUMER_WINDOW_SIZE
dataframes = []
while date_ < end:
df = _load_df(path, date_)
if df is not None:
dataframes.append(df)
date_ = date_ + timedelta(days=1)
df = pd.concat(dataframes)
pip_version = df["pip_version"].str.split(".", n=2, expand=True)
df["pip_major"] = pd.to_numeric(pip_version[0])
df["pip_minor"] = pd.to_numeric(pip_version[1])
glibc_version = df["glibc_version"].str.split(".", n=2, expand=True)
df["glibc_major"] = pd.to_numeric(glibc_version[0])
df["glibc_minor"] = pd.to_numeric(glibc_version[1])
df["manylinux1"] = (
((df.pip_major > 8) | ((df.pip_major == 8) & (df.pip_minor >= 1)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 5)))
).astype(int)
df["manylinux2010"] = (
((df.pip_major > 19) | ((df.pip_major == 19) & (df.pip_minor >= 0)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 12)))
).astype(int)
df["manylinux2014"] = (
((df.pip_major > 19) | ((df.pip_major == 19) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 17)))
).astype(int)
df["manylinux_2_17"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 17)))
).astype(int)
df["manylinux_2_26"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 26)))
).astype(int)
df["manylinux_2_27"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 27)))
).astype(int)
df["manylinux_2_28"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 28)))
).astype(int)
df["manylinux_2_31"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 31)))
).astype(int)
df["manylinux_2_34"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 34)))
).astype(int)
df["manylinux_2_35"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 35)))
).astype(int)
df["manylinux_2_36"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 36)))
).astype(int)
df["manylinux_2_39"] = (
((df.pip_major > 20) | ((df.pip_major == 20) & (df.pip_minor >= 3)))
& ((df.glibc_major > 2) | ((df.glibc_major == 2) & (df.glibc_minor >= 39)))
).astype(int)
df["policy"] = (
df["manylinux1"]
+ df["manylinux2010"]
+ df["manylinux2014"]
+ df["manylinux_2_17"]
+ df["manylinux_2_26"]
+ df["manylinux_2_27"]
+ df["manylinux_2_28"]
+ df["manylinux_2_31"]
+ df["manylinux_2_34"]
+ df["manylinux_2_35"]
+ df["manylinux_2_36"]
+ df["manylinux_2_39"]
)
df.drop(
columns=[
"pip_version",
"pip_major",
"pip_minor",
"glibc_major",
"glibc_minor",
"manylinux1",
"manylinux2010",
"manylinux2014",
"manylinux_2_17",
"manylinux_2_26",
"manylinux_2_27",
"manylinux_2_28",
"manylinux_2_31",
"manylinux_2_34",
"manylinux_2_35",
"manylinux_2_36",
"manylinux_2_39",
],
inplace=True,
)
df = df[(df["cpu"] == "x86_64") | (df["cpu"] == "i686")]
df.drop(columns=["cpu"], inplace=True)
df = df.groupby(
["day", "python_version", "glibc_version", "policy"], as_index=False
).aggregate("sum")
# apply rolling window
df = pd.pivot_table(
df,
index="day",
columns=["python_version", "glibc_version", "policy"],
values="num_downloads",
fill_value=0,
aggfunc="sum",
)
df = df.rolling(window=utils.CONSUMER_WINDOW_SIZE, min_periods=1).sum()
df = (
df.stack(list(range(df.columns.nlevels)), future_stack=True)
.reset_index()
.fillna(0.0)
)
df.rename(columns={0: "num_downloads"}, inplace=True)
df = df[(df["num_downloads"] > 0) & (df["day"] >= pd.to_datetime(start))]
df = df.groupby(
["day", "python_version", "glibc_version", "policy"], as_index=False
).aggregate("sum")
# non EOL dataframe
df_non_eol = df.copy()
for k, v in PYTHON_EOL.items():
mask = (df_non_eol["python_version"] == k) & (df_non_eol["day"] >= v)
df_non_eol.loc[mask, "num_downloads"] = 0
df.set_index("day", append=True, inplace=True)
df = df.swaplevel()
df_non_eol.set_index("day", append=True, inplace=True)
df_non_eol = df_non_eol.swaplevel()
# python version download stats
df_python = (
df[["python_version", "num_downloads"]]
.groupby(["day", "python_version"])
.aggregate("sum")
)
df_python_all = df_python.groupby(["day"]).aggregate("sum")
df_python_stats = df_python / df_python_all
df_python_non_eol = (
df_non_eol[["python_version", "num_downloads"]]
.groupby(["day", "python_version"])
.aggregate("sum")
)
df_python_non_eol_all = df_python_non_eol.groupby(["day"]).aggregate("sum")
df_python_non_eol_stats = df_python_non_eol / df_python_non_eol_all
# glibc version download stats
df_glibc = (
df[["glibc_version", "num_downloads"]]
.groupby(["day", "glibc_version"])
.aggregate("sum")
)
df_glibc_all = df_glibc.groupby(["day"]).aggregate("sum")
df_glibc_stats = df_glibc / df_glibc_all
df_glibc_non_eol = (
df_non_eol[["glibc_version", "num_downloads"]]
.groupby(["day", "glibc_version"])
.aggregate("sum")
)
df_glibc_non_eol_all = df_glibc_non_eol.groupby(["day"]).aggregate("sum")
df_glibc_non_eol_stats = df_glibc_non_eol / df_glibc_non_eol_all
out: dict[str, Any] = {
"last_update": datetime.now(timezone.utc).strftime("%A, %d %B %Y, %H:%M:%S %Z"),
"index": list(d.date().isoformat() for d in df_python_all.index),
}
# combine some versions to remove some of the less used ones
# but still accounting for the smaller one
glibc_versions = [
("2.5", "2.6", "2.7", "2.8", "2.9", "2.10", "2.11"),
("2.12", "2.13", "2.14", "2.15", "2.16"),
("2.17", "2.18", "2.19", "2.20", "2.21", "2.22", "2.23", "2.24", "2.25"),
("2.26",),
("2.27",),
("2.28", "2.29", "2.30"),
("2.31", "2.32", "2.33"),
("2.34",),
("2.35",),
("2.36", "2.37", "2.38"),
("2.39", "2.40"),
]
glibc_versions = glibc_versions[::-1]
glibc_version = dict[str, Union[list[str], list[float]]]()
glibc_version["keys"] = list(v[0] for v in glibc_versions)
glibc_version_non_eol = dict[str, Union[list[str], list[float]]]()
glibc_version_non_eol["keys"] = list(v[0] for v in glibc_versions)
for versions in glibc_versions:
stats = []
stats_non_eol = []
for day in out["index"]:
value = 0.0
value_non_eol = 0.0
for version in versions:
try:
value += float(
df_glibc_stats.loc[
(pd.to_datetime(day), version), "num_downloads"
]
)
except KeyError:
pass
try:
value_non_eol += float(
df_glibc_non_eol_stats.loc[
(pd.to_datetime(day), version), "num_downloads"
]
)
except KeyError:
pass
stats.append(float(f"{100.0 * value:.2f}"))
stats_non_eol.append(float(f"{100.0 * value_non_eol:.2f}"))
glibc_version[versions[0]] = stats
glibc_version_non_eol[versions[0]] = stats_non_eol
out["glibc_version"] = glibc_version
out["glibc_version_non_eol"] = glibc_version_non_eol
python_versions_no_pep600_pip = ["3.6", "3.7", "3.8", "3.9"]
python_versions = python_versions_no_pep600_pip + [
v for v in PYTHON_EOL if v not in python_versions_no_pep600_pip
]
python_version = dict[str, list[str] | list[float]]()
python_version_non_eol = dict[str, list[str] | list[float]]()
policy_readiness = dict[str, dict[str, list[str] | list[float]]]()
glibc_readiness = dict[str, dict[str, list[str] | list[float]]]()
python_version["keys"] = python_versions
python_version_non_eol["keys"] = [
version
for version in python_versions
if PYTHON_EOL[version] > pd.to_datetime(start)
]
for version in python_versions:
stats = []
for day in out["index"]:
try:
value = float(
df_python_stats.loc[(pd.to_datetime(day), version), "num_downloads"]
)
except KeyError:
value = 0.0
stats.append(float(f"{100.0 * value:.1f}"))
python_version[version] = stats
if version in python_version_non_eol["keys"]:
stats = []
for day in out["index"]:
try:
value = float(
df_python_non_eol_stats.loc[
(pd.to_datetime(day), version), "num_downloads"
]
)
except KeyError:
value = 0.0
stats.append(float(f"{100.0 * value:.1f}"))
python_version_non_eol[version] = stats
df_python_version = df[df["python_version"] == version]
if version in python_versions_no_pep600_pip:
df_policy = (
df_python_version[["policy", "num_downloads"]]
.groupby(["day", "policy"])
.aggregate("sum")
)
df_policy_all = df_policy.groupby(["day"]).aggregate("sum")
df_policy_stats = df_policy / df_policy_all
policy_readiness_ver = dict[str, Union[list[str], list[float]]]()
policy_readiness_ver["keys"] = list(
POLICIES[i] for i in range(len(POLICIES))[::-1]
)
policy_readiness[version] = policy_readiness_ver
for i in range(len(POLICIES))[::-1]:
policy = POLICIES[i]
stats = []
for day in out["index"]:
try:
value = float(
df_policy_stats.loc[
(pd.to_datetime(day), i), "num_downloads"
]
)
except KeyError:
value = 0.0
stats.append(float(f"{100.0 * value:.2f}"))
policy_readiness_ver[policy] = stats
df_glibc = (
df_python_version[["glibc_version", "num_downloads"]]
.groupby(["day", "glibc_version"])
.aggregate("sum")
)
df_glibc_all = df_glibc.groupby(["day"]).aggregate("sum")
df_glibc_stats = df_glibc / df_glibc_all
glibc_readiness_ver = dict[str, Union[list[str], list[float]]]()
glibc_readiness_ver["keys"] = list(v[0] for v in glibc_versions)
glibc_readiness[version] = glibc_readiness_ver
for versions in glibc_versions:
stats = []
for day in out["index"]:
value = 0.0
for glibc_version in versions:
try:
value += float(
df_glibc_stats.loc[
(pd.to_datetime(day), glibc_version), "num_downloads"
]
)
except KeyError:
pass
stats.append(float(f"{100.0 * value:.2f}"))
glibc_readiness_ver[versions[0]] = stats
out["python_version"] = python_version
out["python_version_non_eol"] = python_version_non_eol
out["policy_readiness"] = policy_readiness
out["glibc_readiness"] = glibc_readiness
with open(utils.CONSUMER_DATA_PATH, "w") as f:
json.dump(out, f, separators=(",", ":"))