-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
78 lines (58 loc) · 2.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import os
import tqdm
import torch
import torchvision.transforms as T
from torchvision.models import VisionTransformer
from augmentation import get_test_val_transforms
from dataloader import LoadCocoDataset
def evaluate(val_ds, model, device):
trues = []
predictions = []
model = model.to(device)
model.eval()
with torch.no_grad():
for x, y in tqdm.tqdm(val_ds, total=len(val_ds)):
x = torch.unsqueeze(x, dim=0)
x = x.to(device)
pred = model(x)
y = torch.argmax(y, dim=1)
pred = torch.argmax(pred.softmax(dim=1), dim=1)
trues.append(y)
predictions.append(pred)
accuracy = (trues == predictions).type(torch.float).sum() / len(val_ds)
return accuracy
if __name__ == "__main__":
parser = argparse.ArgumentParser('ViT evaluation script for mushrooms image classification', add_help=False)
## evaluation parameters
parser.add_argument('-vj', '--val_json', default="./annotations/val.json", type=str, help='validation json file location')
parser.add_argument('-g', '--gpu', default=0, type=int, help='GPU position')
parser.add_argument('-is', '--image_shape', default=(224, 224), type=tuple, help='new image shape')
parser.add_argument('-cp', '--checkpoint_path', default="./model/model.pt", type=str, help='checkpoint path')
args = parser.parse_args()
# gpu or cpu
device = torch.device(f"cuda:{gpu}" if torch.cuda.is_available() else "cpu")
print(f"Running on {device}.")
# load data
transforms = get_test_val_transforms(args.image_shape)
val_ds = LoadCocoDataset(args.val_json, transforms)
# load model
assert os.path.exists(args.checkpoint_path)
print("Loading pre-trained model ...")
checkpoint = torch.load(args.checkpoint_path)
model = VisionTransformer(
image_size = checkpoint["image_shape"],
patch_size = checkpoint["patch_size"],
num_layers = checkpoint["num_layers"],
num_heads = checkpoint["num_heads"],
hidden_dim = checkpoint["hidden_dim"],
mlp_dim = checkpoint["mlp_dim"],
dropout = checkpoint["dropout"],
attention_dropout = checkpoint["attention_dropout"],
num_classes = checkpoint["num_classes"],
)
model.load_state_dict(checkpoint["model_state_dict"])
print("... Model successfully loaded.")
# evaluation
accuracy = evaluate(val_ds, model, device)
print("Accuracy: {:.3f} %".format(accuracy*100))