-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnormalization.py
375 lines (316 loc) · 16.2 KB
/
normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# -*- coding: utf-8 -*-
"""
The :class:`LocalResponseNormalization2DLayer
<lasagne.layers.LocalResponseNormalization2DLayer>` implementation contains
code from `pylearn2 <http://github.com/lisa-lab/pylearn2>`_, which is covered
by the following license:
Copyright (c) 2011--2014, Université de Montréal
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import theano
import theano.tensor as T
from lasagne.layers import init
from lasagne.layers import nonlinearities
from lasagne.layers import Layer
__all__ = [
"LocalResponseNormalization2DLayer",
"BatchNormLayer",
"batch_norm",
]
class LocalResponseNormalization2DLayer(Layer):
"""
Cross-channel Local Response Normalization for 2D feature maps.
Aggregation is purely across channels, not within channels,
and performed "pixelwise".
If the value of the :math:`i` th channel is :math:`x_i`, the output is
.. math::
x_i = \\frac{x_i}{ (k + ( \\alpha \\sum_j x_j^2 ))^\\beta }
where the summation is performed over this position on :math:`n`
neighboring channels.
Parameters
----------
incoming : a :class:`Layer` instance or a tuple
The layer feeding into this layer, or the expected input shape. Must
follow *BC01* layout, i.e., ``(batchsize, channels, rows, columns)``.
alpha : float scalar
coefficient, see equation above
k : float scalar
offset, see equation above
beta : float scalar
exponent, see equation above
n : int
number of adjacent channels to normalize over, must be odd
Notes
-----
This code is adapted from pylearn2. See the module docstring for license
information.
"""
def __init__(self, incoming, alpha=1e-4, k=2, beta=0.75, n=5, **kwargs):
super(LocalResponseNormalization2DLayer, self).__init__(incoming,
**kwargs)
self.alpha = alpha
self.k = k
self.beta = beta
self.n = n
if n % 2 == 0:
raise NotImplementedError("Only works with odd n")
def get_output_shape_for(self, input_shape):
return input_shape
def get_output_for(self, input, **kwargs):
input_shape = self.input_shape
if any(s is None for s in input_shape):
input_shape = input.shape
half_n = self.n // 2
input_sqr = T.sqr(input)
b, ch, r, c = input_shape
extra_channels = T.alloc(0., b, ch + 2*half_n, r, c)
input_sqr = T.set_subtensor(extra_channels[:, half_n:half_n+ch, :, :],
input_sqr)
scale = self.k
for i in range(self.n):
scale += self.alpha * input_sqr[:, i:i+ch, :, :]
scale = scale ** self.beta
return input / scale
class BatchNormLayer(Layer):
"""
lasagne.layers.BatchNormLayer(incoming, axes='auto', epsilon=1e-4,
alpha=0.1, beta=lasagne.init.Constant(0), gamma=lasagne.init.Constant(1),
mean=lasagne.init.Constant(0), inv_std=lasagne.init.Constant(1), **kwargs)
Batch Normalization
This layer implements batch normalization of its inputs, following [1]_:
.. math::
y = \\frac{x - \\mu}{\\sqrt{\\sigma^2 + \\epsilon}} \\gamma + \\beta
That is, the input is normalized to zero mean and unit variance, and then
linearly transformed. The crucial part is that the mean and variance are
computed across the batch dimension, i.e., over examples, not per example.
During training, :math:`\\mu` and :math:`\\sigma^2` are defined to be the
mean and variance of the current input mini-batch :math:`x`, and during
testing, they are replaced with average statistics over the training
data. Consequently, this layer has four stored parameters: :math:`\\beta`,
:math:`\\gamma`, and the averages :math:`\\mu` and :math:`\\sigma^2`
(nota bene: instead of :math:`\\sigma^2`, the layer actually stores
:math:`1 / \\sqrt{\\sigma^2 + \\epsilon}`, for compatibility to cuDNN).
By default, this layer learns the average statistics as exponential moving
averages computed during training, so it can be plugged into an existing
network without any changes of the training procedure (see Notes).
Parameters
----------
incoming : a :class:`Layer` instance or a tuple
The layer feeding into this layer, or the expected input shape
axes : 'auto', int or tuple of int
The axis or axes to normalize over. If ``'auto'`` (the default),
normalize over all axes except for the second: this will normalize over
the minibatch dimension for dense layers, and additionally over all
spatial dimensions for convolutional layers.
epsilon : scalar
Small constant :math:`\\epsilon` added to the variance before taking
the square root and dividing by it, to avoid numerical problems
alpha : scalar
Coefficient for the exponential moving average of batch-wise means and
standard deviations computed during training; the closer to one, the
more it will depend on the last batches seen
beta : Theano shared variable, expression, numpy array, callable or None
Initial value, expression or initializer for :math:`\\beta`. Must match
the incoming shape, skipping all axes in `axes`. Set to ``None`` to fix
it to 0.0 instead of learning it.
See :func:`lasagne.utils.create_param` for more information.
gamma : Theano shared variable, expression, numpy array, callable or None
Initial value, expression or initializer for :math:`\\gamma`. Must
match the incoming shape, skipping all axes in `axes`. Set to ``None``
to fix it to 1.0 instead of learning it.
See :func:`lasagne.utils.create_param` for more information.
mean : Theano shared variable, expression, numpy array, or callable
Initial value, expression or initializer for :math:`\\mu`. Must match
the incoming shape, skipping all axes in `axes`.
See :func:`lasagne.utils.create_param` for more information.
inv_std : Theano shared variable, expression, numpy array, or callable
Initial value, expression or initializer for :math:`1 / \\sqrt{
\\sigma^2 + \\epsilon}`. Must match the incoming shape, skipping all
axes in `axes`.
See :func:`lasagne.utils.create_param` for more information.
**kwargs
Any additional keyword arguments are passed to the :class:`Layer`
superclass.
Notes
-----
This layer should be inserted between a linear transformation (such as a
:class:`DenseLayer`, or :class:`Conv2DLayer`) and its nonlinearity. The
convenience function :func:`batch_norm` modifies an existing layer to
insert batch normalization in front of its nonlinearity.
The behavior can be controlled by passing keyword arguments to
:func:`lasagne.layers.get_output()` when building the output expression
of any network containing this layer.
During training, [1]_ normalize each input mini-batch by its statistics
and update an exponential moving average of the statistics to be used for
validation. This can be achieved by passing ``deterministic=False``.
For validation, [1]_ normalize each input mini-batch by the stored
statistics. This can be achieved by passing ``deterministic=True``.
For more fine-grained control, ``batch_norm_update_averages`` can be passed
to update the exponential moving averages (``True``) or not (``False``),
and ``batch_norm_use_averages`` can be passed to use the exponential moving
averages for normalization (``True``) or normalize each mini-batch by its
own statistics (``False``). These settings override ``deterministic``.
Note that for testing a model after training, [1]_ replace the stored
exponential moving average statistics by fixing all network weights and
re-computing average statistics over the training data in a layerwise
fashion. This is not part of the layer implementation.
In case you set `axes` to not include the batch dimension (the first axis,
usually), normalization is done per example, not across examples. This does
not require any averages, so you can pass ``batch_norm_update_averages``
and ``batch_norm_use_averages`` as ``False`` in this case.
See also
--------
batch_norm : Convenience function to apply batch normalization to a layer
References
----------
.. [1] Ioffe, Sergey and Szegedy, Christian (2015):
Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. http://arxiv.org/abs/1502.03167.
"""
def __init__(self, incoming, axes='auto', epsilon=1e-4, alpha=0.1,
beta=init.Constant(0), gamma=init.Constant(1),
mean=init.Constant(0), inv_std=init.Constant(1), **kwargs):
super(BatchNormLayer, self).__init__(incoming, **kwargs)
if axes == 'auto':
# default: normalize over all but the second axis
axes = (0,) + tuple(range(2, len(self.input_shape)))
elif isinstance(axes, int):
axes = (axes,)
self.axes = axes
self.epsilon = epsilon
self.alpha = alpha
# create parameters, ignoring all dimensions in axes
shape = [size for axis, size in enumerate(self.input_shape)
if axis not in self.axes]
if any(size is None for size in shape):
raise ValueError("BatchNormLayer needs specified input sizes for "
"all axes not normalized over.")
if beta is None:
self.beta = None
else:
self.beta = self.add_param(beta, shape, 'beta',
trainable=True, regularizable=False)
if gamma is None:
self.gamma = None
else:
self.gamma = self.add_param(gamma, shape, 'gamma',
trainable=True, regularizable=True)
self.mean = self.add_param(mean, shape, 'mean',
trainable=False, regularizable=False)
self.inv_std = self.add_param(inv_std, shape, 'inv_std',
trainable=False, regularizable=False)
def get_output_for(self, input, deterministic=False,
batch_norm_use_averages=None,
batch_norm_update_averages=None, **kwargs):
input_mean = input.mean(self.axes)
input_inv_std = T.inv(T.sqrt(input.var(self.axes) + self.epsilon))
# Decide whether to use the stored averages or mini-batch statistics
if batch_norm_use_averages is None:
batch_norm_use_averages = deterministic
use_averages = batch_norm_use_averages
if use_averages:
mean = self.mean
inv_std = self.inv_std
else:
mean = input_mean
inv_std = input_inv_std
# Decide whether to update the stored averages
if batch_norm_update_averages is None:
batch_norm_update_averages = not deterministic
update_averages = batch_norm_update_averages
if update_averages:
# Trick: To update the stored statistics, we create memory-aliased
# clones of the stored statistics:
running_mean = theano.clone(self.mean, share_inputs=False)
running_inv_std = theano.clone(self.inv_std, share_inputs=False)
# set a default update for them:
running_mean.default_update = ((1 - self.alpha) * running_mean +
self.alpha * input_mean)
running_inv_std.default_update = ((1 - self.alpha) *
running_inv_std +
self.alpha * input_inv_std)
# and make sure they end up in the graph without participating in
# the computation (this way their default_update will be collected
# and applied, but the computation will be optimized away):
mean += 0 * running_mean
inv_std += 0 * running_inv_std
# prepare dimshuffle pattern inserting broadcastable axes as needed
param_axes = iter(range(input.ndim - len(self.axes)))
pattern = ['x' if input_axis in self.axes
else next(param_axes)
for input_axis in range(input.ndim)]
# apply dimshuffle pattern to all parameters
beta = 0 if self.beta is None else self.beta.dimshuffle(pattern)
gamma = 1 if self.gamma is None else self.gamma.dimshuffle(pattern)
mean = mean.dimshuffle(pattern)
inv_std = inv_std.dimshuffle(pattern)
# normalize
normalized = (input - mean) * (gamma * inv_std) + beta
return normalized
def batch_norm(layer, **kwargs):
"""
Apply batch normalization to an existing layer. This is a convenience
function modifying an existing layer to include batch normalization: It
will steal the layer's nonlinearity if there is one (effectively
introducing the normalization right before the nonlinearity), remove
the layer's bias if there is one (because it would be redundant), and add
a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.
Parameters
----------
layer : A :class:`Layer` instance
The layer to apply the normalization to; note that it will be
irreversibly modified as specified above
**kwargs
Any additional keyword arguments are passed on to the
:class:`BatchNormLayer` constructor.
Returns
-------
BatchNormLayer or NonlinearityLayer instance
A batch normalization layer stacked on the given modified `layer`, or
a nonlinearity layer stacked on top of both if `layer` was nonlinear.
Examples
--------
Just wrap any layer into a :func:`batch_norm` call on creating it:
>>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
>>> from lasagne.nonlinearities import tanh
>>> l1 = InputLayer((64, 768))
>>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))
This introduces batch normalization right before its nonlinearity:
>>> from lasagne.layers import get_all_layers
>>> [l.__class__.__name__ for l in get_all_layers(l2)]
['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
"""
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = nonlinearities.identity
if hasattr(layer, 'b') and layer.b is not None:
del layer.params[layer.b]
layer.b = None
bn_name = (kwargs.pop('name', None) or
(getattr(layer, 'name', None) and layer.name + '_bn'))
layer = BatchNormLayer(layer, name=bn_name, **kwargs)
if nonlinearity is not None:
from .special import NonlinearityLayer
nonlin_name = bn_name and bn_name + '_nonlin'
layer = NonlinearityLayer(layer, nonlinearity, name=nonlin_name)
return layer