Skip to content

Latest commit

 

History

History
241 lines (206 loc) · 15.8 KB

TotalSegmentator_v2.md

File metadata and controls

241 lines (206 loc) · 15.8 KB

TotalSegmentator V2

Dataset Information

TotalSegmentator is currently the largest publicly available annotated CT segmentation dataset. The first version of the data was released in July 2022, and the dataset underwent a significant update in September 2023. There was a modest increase in both the number of images and the number of annotation categories. The total number of images increased from 1204 to 1228 (only the number of images in the test set was increased), and the number of categories increased from 104 to 117. The current public dataset is divided into 1082 training images, 57 validation images, and 89 test images (the v1 version had 65), all of which are publicly available with annotations. For an introduction to the first version of the data, please refer to the link below. For more detailed information about the data changes, please refer to the following:

Changes/improvements for public dataset:

  • Increased number of classes from 104 to 117 (all classes of the total task)
  • Removed heart chamber classes
  • Improved label quality (see above) (better than before but probably still some errors)
  • More meta data per image (scanner, pathology, ...)
  • Less intrusive defacing
  • No more corrupted files
  • Example code for converting to nnU-Net format
  • Example code for evaluation
  • Same subjects as in v1 for training and validation (we did not publish the additional subjects we used for TotalSegmentator v2 training)
  • A few more subjects than in v1 for testing
  • NOTE: labels for additional tasks are not included

Dataset Meta Information

Dimensions Modality Task Type Anatomical Structures Anatomical Area Number of Categories Data Volume File Format
3D CT Segmentation Whole Body Whole Body 117 1228 .nii.gz

Resolution Details

Resolution Level spacing (mm) size
Original Image (1.5, 1.5, 1.5) (47, 48, 29)
Medium Resolution (1.5, 1.5, 1.5) (241, 231, 231)
High Resolution (1.5, 1.5, 1.5) (499, 467, 851)

Total number of image voxels: 317,863 (From the 1228 total cases of the dataset).

Label Information Statistics

Label Organ Cases Coverage Volume (cm³) Adjusted Volume (cm³)
1 spleen 886 72.15% 177.28 2542.53
2 kidney_right 782 63.68% 127.44 432.66
3 kidney_left 802 65.31% 126.78 527
4 gallbladder 654 53.26% 18.13 146.8
5 liver 937 76.30% 1363.42 4162.89
6 stomach 905 73.70% 228.41 3174.68
7 pancreas 811 66.04% 59.33 145.81
8 adrenal_gland_right 827 67.35% 3.47 9.88
9 adrenal_gland_left 800 65.15% 4.02 13.27
10 lung_upper_lobe_left 1024 83.39% 781.69 2929.41
11 lung_lower_lobe_left 1006 81.92% 633.56 2136.38
12 lung_upper_lobe_right 894 72.80% 729.36 2304.4
13 lung_middle_lobe_right 881 71.74% 328.26 1806.94
14 lung_lower_lobe_right 991 80.70% 734.69 2412.69
15 esophagus 1032 84.04% 27 176.31
16 trachea 792 64.50% 32.48 79.53
17 thyroid_gland 700 57.00% 12.77 62.27
18 small_bowel 811 66.04% 694.43 2584.29
19 duodenum 768 62.54% 47.06 297.74
20 colon 913 74.35% 535.68 2046.86
21 urinary bladder 571 46.50% 144.21 835.44
22 prostate 343 27.93% 27.06 140.62
23 kidney cyst left 30 2.44% 57.39 527.12
24 kidney cyst right 25 2.04% 26.03 914.43
25 sacrum 616 50.16% 171.23 296.25
26 vertebrae S1 589 47.96% 47.04 99.11
27 vertebrae L5 619 50.41% 62.48 99.82
28 vertebrae L4 636 51.79% 62.66 110.09
29 vertebrae L3 645 52.52% 62.09 140.92
30 vertebrae L2 712 57.98% 55.86 93.21
31 vertebrae L1 801 65.23% 50.86 97.68
32 vertebrae T12 871 70.93% 44.88 108.59
33 vertebrae T11 887 72.23% 41.41 75
34 vertebrae T10 877 71.42% 37.97 85.52
35 vertebrae T9 849 69.14% 33.17 67.92
36 vertebrae T8 796 64.82% 30.04 81.54
37 vertebrae T7 745 60.67% 28.14 60.16
38 vertebrae T6 732 59.61% 25.05 56.8
39 vertebrae T5 733 59.69% 24.31 46.18
40 vertebrae T4 738 60.10% 22.98 37.59
41 vertebrae T3 742 60.42% 21.8 40.2
42 vertebrae T2 724 58.96% 23.04 38.84
43 vertebrae T1 704 57.33% 21.92 41.35
44 vertebrae C7 691 56.27% 13.5 32.54
45 vertebrae C6 556 45.28% 6.1 27.45
46 vertebrae C5 349 28.42% 11.3 25.66
47 vertebrae C4 250 20.36% 12.31 25.07
48 vertebrae C3 229 18.65% 12.75 23.21
49 vertebrae C2 252 20.52% 17.02 28.8
50 vertebrae C1 247 20.11% 12.63 23.22
51 heart 916 74.59% 523.93 1305.97
52 aorta 1078 87.79% 181.52 1566.34
53 pulmonary vein 775 63.11% 21.95 53.63
54 brachiocephalic trunk 725 59.04% 5.18 15.39
55 subclavian artery right 724 58.96% 7.2 23.88
56 subclavian artery left 746 60.75% 8.07 22.28
57 common carotid artery right 718 58.47% 2.94 9.7
58 common carotid artery left 746 60.75% 4.56 13.22
59 brachiocephalic vein left 726 59.12% 11.78 31.58
60 brachiocephalic vein right 728 59.28% 6.02 22.04
61 atrial appendage left 669 54.48% 6.72 26.66
62 superior vena cava 757 61.64% 19.23 42.7
63 inferior vena cava 977 79.56% 57.37 159.91
64 portal vein and splenic vein 830 67.59% 20.74 65.64
65 iliac artery left 651 53.01% 15.62 106.37
66 iliac artery right 644 52.44% 16.05 129.88
67 iliac vena left 636 51.79% 28.89 61.56
68 iliac vena right 629 51.22% 24.17 54.32
69 humerus left 609 49.59% 44.34 256.93
70 humerus right 603 49.10% 49 310.76
71 scapula_left 807 65.72% 85.29 327.81
72 scapula_right 786 64.01% 87.12 160.98
73 clavicle_left 727 59.20% 21.91 62.2
74 clavicle_right 723 58.88% 23.47 53.77
75 femur_left 566 46.09% 176.6 857.8
76 femur_right 556 45.28% 174.98 771.3
77 hip_left 644 52.44% 351.62 584.29
78 hip_right 637 51.87% 351.84 587.02
79 spinal_cord 1183 96.34% 51.55 1564
80 gluteus_maximus_left 595 48.45% 443.69 1017.17
81 gluteus_maximus_right 594 48.37% 461.64 1084.03
82 gluteus_medius_left 625 50.90% 225.88 504.59
83 gluteus_medius_right 613 49.92% 222.88 466.93
84 gluteus_minimus_left 578 47.07% 52.44 99.59
85 gluteus_minimus_right 569 46.34% 60.64 122.36
86 autochthon_left 1133 92.26% 289.49 796.14
87 autochthon_right 1131 92.10% 284.58 808.46
88 iliopsoas_left 836 68.08% 200.18 571.27
89 iliopsoas_right 842 68.57% 188.32 557.65
90 brain 249 20.28% 562.19 1546.77
91 skull 470 38.27% 142.36 1157.69
92 rib_right 4 787 64.09% 15.01 32.8
93 rib_right 3 766 62.38% 12.01 28.6
94 rib_left_1 742 60.42% 9.12 21.1
95 rib_left_2 752 61.24% 10.82 24.73
96 rib_left_3 773 62.95% 11.83 27.64
97 rib_left_4 806 65.64% 14.51 33.91
98 rib_left_5 868 70.68% 15.27 38.9
99 rib_left_6 909 74.02% 17.02 42.46
100 rib_left_7 891 72.56% 18.12 43.8
101 rib_left_8 888 72.31% 15.82 41.45
102 rib_left_9 890 72.48% 15.22 33.71
103 rib_left_10 880 71.66% 12.46 34.54
104 rib_left_11 857 69.79% 8 25.96
105 rib_left_12 790 64.33% 3.16 10.47
106 rib_right_1 738 60.10% 9.47 26.35
107 rib_right_2 751 61.16% 10.86 25.05
108 rib_right_5 838 68.24% 16.27 38.45
109 rib_right_6 869 70.77% 18.09 43.02
110 rib_right_7 851 69.30% 19.32 46.01
111 rib_right_8 859 69.95% 17.06 45.3
112 rib_right_9 860 70.03% 16.03 39.26
113 rib_right_10 866 70.52% 12.63 33.55
114 rib_right_11 866 70.52% 7.78 23.15
115 rib_right_12 785 63.93% 3.07 12.83
116 sternum 959 78.09% 49.9 123.91
117 costal_cartilages 1017 82.82% 114.45 294.52

Visualization

Visualization from official website.

Visualization using ITK-SNAP on large image.

Visualization using ITK-SNAP on small image.

File Structure

The file structure is consistent with TotalSegmentator v1. After decompressing the official zip package, it includes a meta.csv file and several sxxxx subdirectories. In the meta.csv, each row represents an imaging data, listing the picture ID (image_id), age (age), gender (gender), institution code (institute), body part or examination range (study_type), and dataset division (split). These data cover CT scans of multiple body parts from different institutions and are divided into three subsets: training, validation, and testing. Each sxxxx subdirectory contains a segmentation folder and a ct.nii.gz file.

Totalsegmentator_dataset_v2
│
├── meta.csv
│
├── s0000
│   ├── segmentations
│   │   ├── adrenal_gland_left.nii.gz
│   │   ├── adrenal_gland_right.nii.gz
│   │   ├── aorta.nii.gz
│   │   └── ...
│   ├── ct.nii.gz
│
├── s0001
├── s0002
├── ...
└── s1429

Author and Institution

Jakob Wasserthal (University Hospital Basel, Department of Radiology and Nuclear Medicine, Switzerland)

Source Information

Official Website: https://github.com/wasserth/TotalSegmentator

Download Link: https://doi.org/10.5281/zenodo.6802613

Article Address: https://pubs.rsna.org/doi/10.1148/ryai.230024

Publication Date: September 2023

Citation

@article{totalsegmentator,
    author = {Wasserthal, Jakob and Breit, Hanns-Christian and Meyer, Manfred T. and Pradella, Maurice and Hinck, Daniel and Sauter, Alexander W. and Heye, Tobias and Boll, Daniel T. and Cyriac, Joshy and Yang, Shan and Bach, Michael and Segeroth, Martin},
    title = {TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images},
    journal = {Radiology: Artificial Intelligence},
    volume = {5},
    number = {5},
    pages = {e230024},
    year = {2023}
}

Original introduction article is here.