-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_building.py
40 lines (34 loc) · 1.27 KB
/
model_building.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from keras.layers import Dense,Dropout, SimpleRNN, GRU,LSTM, Masking, Bidirectional,Conv1D,MaxPooling1D
from keras.models import Sequential
from keras.callbacks import Callback, EarlyStopping, ModelCheckpoint
from keras.optimizers import RMSprop, Adam
import keras.backend as K
from keras.utils import plot_model
def build_model(X_train,n_outputs,lr=0.001,verbose = True):
#Model building
dropout = 0.1
recurrent_dropout = 0.2
model = Sequential()
model.add(Bidirectional(LSTM(128,
return_sequences=True,
dropout = dropout,
recurrent_dropout=recurrent_dropout,
stateful=False),
input_shape = X_train[0].shape
#batch_size=batch_size
))
model.add(LSTM(64, return_sequences=True,
dropout = dropout,
recurrent_dropout=recurrent_dropout,
stateful=False,
))
model.add(LSTM(32,
dropout = dropout,
recurrent_dropout=recurrent_dropout,
stateful = False))
model.add(Dense(n_outputs, activation='linear'))
optimizer = RMSprop(lr = lr)
model.compile(optimizer=optimizer, loss='mse')
if verbose:
model.summary()
return model