diff --git a/mmset.raw.html b/mmset.raw.html index ab4a5fa200..cae675976c 100644 --- a/mmset.raw.html +++ b/mmset.raw.html @@ -5607,6 +5607,7 @@ Introduction to Independence Proofs, Elsevier Science B.V., Amsterdam (1980) [QA248.K75]. +
  • [Kunen2] Kunen, Kenneth, Set Theory, revised edition, College Publications, London (2013) [QA248 .K86 2013].
  • diff --git a/set.mm b/set.mm index 2c57dab044..f3176465e3 100644 --- a/set.mm +++ b/set.mm @@ -745091,6 +745091,18 @@ unification theorem (e.g., the sub-theorem whose assertion is step 5 Mathbox for Eric Schmidt #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# $) + + ${ + $d x B $. + rspesbcd.1 $e |- ( ph -> A e. B ) $. + rspesbcd.2 $e |- ( ph -> [. A / x ]. ps ) $. + $( Restricted quantifier version of ~ spesbcd . (Contributed by Eric + Schmidt, 29-Sep-2025.) $) + rspesbcd $p |- ( ph -> E. x e. B ps ) $= + ( cv wcel wa wex wrex wsbc sbcel1v sylibr sbcan sylanbrc spesbcd df-rex ) + ACHEIZBJZCKBCELAUACDATCDMZBCDMUACDMADEIUBFCDENOGTBCDPQRBCESO $. + $} + $( The class of well-founded sets is transitive. (Contributed by Eric Schmidt, 9-Sep-2025.) $) trwf $p |- Tr U. ( R1 " On ) $= @@ -745113,18 +745125,6 @@ unification theorem (e.g., the sub-theorem whose assertion is step 5 QRUTULVCJZVDUJUSVFUQUJUSULVCUJULUSVCDVBURTOPUARUTVDUBUCUIUDUEABCUFUGUH $. $} - ${ - $d x y z $. - $( The class of well-founded sets models the axiom of Extensionality - ~ ax-ext . Part of Corollaray II.2.5 of [Kunen2] p. 112. (Contributed - by Eric Schmidt, 11-Sep-2025.) $) - wfaxext $p |- A. x e. U. ( R1 " On ) A. y e. U. ( R1 " On ) - ( A. z e. U. ( R1 " On ) ( z e. x <-> z e. y ) -> x = y ) $= - ( cr1 con0 cima cuni wtr wel wb wral weq wi trwf traxext ax-mp ) DEFGZHCA - ICBIJCQKABLMBQKAQKNABCQOP $. - $( $j usage 'wfaxext' avoids 'ax-reg'; $) - $} - $( The Cartesian product of two well-founded sets is well-founded. (Contributed by Eric Schmidt, 12-Sep-2025.) $) xpwf $p |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> @@ -745150,6 +745150,233 @@ unification theorem (e.g., the sub-theorem whose assertion is step 5 UFMANOUBUDPQR $. $( $j usage 'rnwf' avoids 'ax-reg'; $) + $( A relation is a well-founded set iff its domain and range are. + (Contributed by Eric Schmidt, 29-Sep-2025.) $) + relwf $p |- ( Rel R -> ( R e. U. ( R1 " On ) <-> + ( dom R e. U. ( R1 " On ) /\ ran R e. U. ( R1 " On ) ) ) ) $= + ( wrel cr1 con0 cima cuni wcel cdm crn dmwf rnwf jca cxp xpwf wss relssdmrn + wa sswf sylan2 expcom syl5 impbid2 ) ABZACDEFZGZAHZUDGZAIZUDGZQZUEUGUIAJAKL + UJUFUHMZUDGZUCUEUFUHNULUCUEUCULAUKOUEAPUKARSTUAUB $. + $( $j usage 'relwf' avoids 'ax-reg'; $) + + ${ + modelaxreplem.1 $e |- ( ps -> x C_ M ) $. + modelaxreplem.2 $e |- ( ps -> A. f ( ( Fun f /\ dom f e. M /\ ran f C_ M ) + -> ran f e. M ) ) $. + modelaxreplem.3 $e |- ( ps -> (/) e. M ) $. + modelaxreplem.4 $e |- ( ps -> x e. M ) $. + + ${ + $d f M $. $d g x $. $d A g $. $d f g $. $d g ps $. $d g M $. + modelaxreplem1.5 $e |- A C_ x $. + $( Lemma for ~ modelaxrep . We show that ` M ` is closed under taking + subsets. (Contributed by Eric Schmidt, 29-Sep-2025.) $) + modelaxreplem1 $p |- ( ps -> A e. M ) $= + ( vg wcel c0 wceq eleq1 syl5ibrcom cv wbr wss wa wne wfo wex csdm ssexi + vex 0sdom cdom cvv ssdomg mp2 fodomr mpan2 wfn crn df-fo wfun cdm df-fn + sylbir anim2d biimtrid sstrid sseq1 w3a df-3an wi wal funeq dmeq eleq1d + weq rneq sseq1d 3anbi123d imbi12d spvv syl biimtrrid syl2and wb exlimdv + adantl mpbidi syl5 pm2.61dne ) ACELZCMAWGCMNMELHCMEOPCMUAZBQZCKQZUBZKUC + ZAWGWHMCUDRZWLCCWIBUFZJUEUGWMCWIUHRZWLWIUILCWISWOWNJCWIUIUJUKWICKULUMUT + AWKWGKWKWJWIUNZWJUOZCNZTZAWGWICWJUPWSWQELZWGAAWPWJUQZWJURZELZTZWRWQESZW + TWPXAXBWINZTAXDWJWIUSAXFXCXAAXCXFWIELIXBWIEOPVAVBAXEWRCESACWIEJFVCWQCEV + DPXDXETXAXCXEVEZAWTXAXCXEVFADQZUQZXHURZELZXHUOZESZVEZXLELZVGZDVHXGWTVGZ + GXPXQDKDKVLZXNXGXOWTXRXIXAXKXCXMXEXHWJVIXRXJXBEXHWJVJVKXRXLWQEXHWJVMZVN + VOXRXLWQEXSVKVPVQVRVSVTWRWTWGWAWPWQCEOWCWDVBWBWEWF $. + $} + + ${ + $d y z w M $. $d f F $. $d f M $. $d x y z w $. + modelaxreplem2.5 $e |- F/ w ps $. + modelaxreplem2.6 $e |- F/ z ps $. + modelaxreplem2.7 $e |- F/_ z F $. + modelaxreplem2.8 $e |- F = { <. w , z >. | ( w e. x /\ + ( z e. M /\ A. y ph ) ) } $. + modelaxreplem2.9 $e |- ( ps -> ( w e. M -> E. y e. M A. z e. M + ( A. y ph -> z = y ) ) ) $. + $( Lemma for ~ modelaxrep . We define a class ` F ` and show that the + antecedent of Replacement implies that ` F ` is a function. We use + Replacement (in the form of ~ funex ) to show that ` F ` exists. Then + we show that, under our hypotheses, the range of ` F ` is a member of + ` M ` . (Contributed by Eric Schmidt, 29-Sep-2025.) $) + modelaxreplem2 $p |- ( ps -> ran F e. M ) $= + ( wcel cv wfun cdm crn wss wel wal wa wmo sseld weq wral wrex wrmo nfa1 + rmo2i df-rmo sylib syl6 syld moanimv sylibr alrimi copab funeqi funopab + wi bitri dmeqi dmopabss eqsstri modelaxreplem1 an12 opabbii eqtri rneqi + rnopabss a1i cvv w3a funex wceq funeq dmeq eleq1d rneq sseq1d 3anbi123d + syl2anc imbi12d spcgv sylc mp3and ) BHUAZHUBZISZHUCZIUDZWPISZBFCUEZETIS + ZADUFZUGZUGZEUHZFUFZWMBXDFNBWSXBEUHZVFXDBWSFTZISZXFBCTZIXGJUIBXHXAEDUJV + FEIUKDIULZXFRXJXAEIUMXFXAEDIADUNUOXAEIUPUQURUSWSXBEUTVAVBWMXCFEVCZUAXEH + XKQVDXCFEVEVGVAZBCWNGIJKLMWNXKUBXIHXKQVHXBFEXIVIVJVKZWQBWPWTWSXAUGZUGZF + EVCZUCIHXPHXKXPQXCXOFEWSWTXAVLVMVNVOXNFEIVPVJVQBHVRSZGTZUAZXRUBZISZXRUC + ZIUDZVSZYBISZVFZGUFWMWOWQVSZWRVFZBWMWOXQXLXMIHVTWHKYFYHGHVRXRHWAZYDYGYE + WRYIXSWMYAWOYCWQXRHWBYIXTWNIXRHWCWDYIYBWPIXRHWEZWFWGYIYBWPIYJWDWIWJWKWL + $. + + $( Lemma for ~ modelaxrep . We show that the consequent of Replacement + is satisfied with ` ran F ` as the value of ` y ` . (Contributed by + Eric Schmidt, 29-Sep-2025.) $) + modelaxreplem3 $p |- ( ps -> E. y e. M A. z e. M + ( z e. y <-> E. w e. M ( w e. x /\ A. y ph ) ) ) $= + ( wa wb wel wal wrex wral crn modelaxreplem2 wsbc cv wex sseld pm4.71rd + wcel anbi1d an12 anass anbi2i bitri bitrdi exbid copab cab rneqi rnopab + eqtri eqabri df-rex 19.42v bitr4i 3bitr4g baibd wnfc nfrn sbcralt mpan2 + ralrimia nfel1 sbcbig sbcel2gv nfcv nfv nfa1 nfrexw sbcgf bibi12d bitrd + nfan ralbid syl mpbird rspesbcd ) BEDUAZFCUAZADUBZSZFIUCZTZEIUDZDHUEZIA + BCDEFGHIJKLMNOPQRUFZBWQDWRUGZEUHZWRULZWOTZEIUDZBXCEIOBXBXAIULZWOBWLXEWM + SZSZFUIZXEFUHZIULZWNSZSZFUIZXBXEWOSZBXGXLFNBXGXJWLSZXFSZXLBWLXOXFBWLXJB + CUHIXIJUJUKUMXPXEXOWMSZSXLXOXEWMUNXQXKXEXJWLWMUOUPUQURUSXHEWRWRXGFEUTZU + EXHEVAHXRQVBXGFEVCVDVEXNXEXKFUIZSXMWOXSXEWNFIVFUPXEXKFVGVHVIVJVOBWRIULZ + WTXDTWSXTWTWPDWRUGZEIUDZXDXTEWRVKWTYBTEHPVLZWPDEWRIIVMVNXTYAXCEIEWRIYCV + PXTYAWKDWRUGZWODWRUGZTXCWKWODWRIVQXTYDXBYEWODXAWRIVRWODWRIWNDFIDIVSWLWM + DWLDVTADWAWFWBWCWDWEWGWEWHWIWJ $. + $} + + $} + + ${ + $d x y z w g M $. $d f g M $. $d g ph $. + modelaxrep.1 $e |- ( ps -> Tr M ) $. + modelaxrep.2 $e |- ( ps -> A. f ( ( Fun f /\ dom f e. M /\ ran f C_ M ) + -> ran f e. M ) ) $. + modelaxrep.3 $e |- ( ps -> (/) e. M ) $. + $( Conditions which guarantee that a class models the Axiom of Replacement + ~ ax-rep . Similar to Lemma II.2.4(6) of [Kunen2] p. 111. The first + two hypotheses are those in Kunen. The reason for the third hypothesis + that our version of Replacement is different from Kunen's (which is + ~ zfrep6 ). If we assumed Regularity, we could eliminate this extra + hypothesis, since under Regularity, the empty set is a member of every + non-empty transitive class. + + Note that, to obtain the relativization of an instance of Replacement to + ` M ` , the formula ` A. y ph ` would need to be replaced with + ` A. y e. M ch ` , where ` ch ` is ` ph ` with all quantifiers + relativized to ` M ` . However, we can obtain this by using + ` y e. M /\ ch ` for ` ph ` in this theorem, so it does establish that + all instances of Replacement hold in ` M ` . (Contributed by Eric + Schmidt, 29-Sep-2025.) $) + modelaxrep $p |- ( ps -> A. x e. M ( A. w e. M E. y e. M A. z e. M ( A. y + ph -> z = y ) -> E. y e. M A. z e. M ( z e. y <-> E. w e. M ( w e. x + /\ A. y ph ) ) ) ) $= + ( vg cv wcel wss wi wal wral wrex wa wtr wfun cdm crn w3a c0 weq wb funeq + wel dmeq eleq1d rneq sseq1d 3anbi123d imbi12d cbvalvw sylib trss ad5ant14 + copab imp simp-4r simpllr simplr nfv nfan nfcv nfrexw nfralw nfopab2 eqid + nfra1 rsp adantl modelaxreplem3 ex ralrimiva syl21anc ) BHUAZLMZUBZWAUCZH + NZWAUDZHOZUEZWEHNZPZLQZUFHNZADQZEDUGPZEHRZDHSZFHRZEDUJFCUJZWLTFHSUHEHRDHS + ZPZCHRIBGMZUBZWTUCZHNZWTUDZHOZUEZXDHNZPZGQWJJXHWIGLGLUGZXFWGXGWHXIXAWBXCW + DXEWFWTWAUIXIXBWCHWTWAUKULXIXDWEHWTWAUMZUNUOXIXDWEHXJULUPUQURKVTWJTZWKTZW + SCHXLCMZHNZTZWPWRAXOWPTCDEFLWQEMHNWLTTZFEVAZHVTXNXMHOZWJWKWPVTXNXRHXMUSVB + UTVTWJWKXNWPVCXKWKXNWPVDXLXNWPVEXOWPFXOFVFWOFHVMVGXOWPEXOEVFWOEFHEHVHZWNE + DHXSWMEHVMVIVJVGXPFEVKXQVLWPFMHNWOPXOWOFHVNVOVPVQVRVS $. + $} + + ${ + $d x y z $. $d ph y z $. $d y M $. + + $( A class that is closed under subsets models the Axiom of Separation + ~ ax-sep . Lemma II.2.4(3) of [Kunen2] p. 111. + + Note that, to obtain the relativization of an instance of Separation to + ` M ` , the formula ` ph ` would need to be replaced with its + relativization to ` M ` . However, this new formula is a valid + substitution for ` ph ` , so this theorem does establish that all + instances of Separation hold in ` M ` . (Contributed by Eric Schmidt, + 29-Sep-2025.) $) + ssclaxsep $p |- ( A. z e. M ~P z C_ M -> A. z e. M E. y e. M A. x e. M + ( x e. y <-> ( x e. z /\ ph ) ) ) $= + ( cv cpw wss wel wa wb wral wrex wcel wex wal ax-sep wi biimp simpl alimi + syl6 velpw df-ss bitr2i sylib ssel syl5 alral eximdv df-rex sylibr ralimi + jca2 mpi ) DFZGZEHZBCIZBDIZAJZKZBELZCEMZDEURCFZENZVCJZCOZVDURVBBPZCOVHABC + DQURVIVGCURVIVFVCVIVEUQNZURVFVIUSUTRZBPZVJVBVKBVBUSVAUTUSVASUTATUBUAVJVEU + PHVLCUPUCBVEUPUDUEUFUQEVEUGUHVBBEUIUNUJUOVCCEUKULUM $. + $} + + ${ + $d x z w $. $d y z w $. $d z M $. + + $( A class that is closed under the pairing operation models the Axiom of + Pairing ~ ax-pr . Lemma II.2.4(4) of [Kunen2] p. 111. (Contributed by + Eric Schmidt, 29-Sep-2025.) $) + prclaxpr $p |- ( A. x e. M A. y e. M { x , y } e. M -> + A. x e. M A. y e. M E. z e. M A. w e. M + ( ( w = x \/ w = y ) -> w e. z ) ) $= + ( cv cpr wcel weq wo wel wi wral wrex vex elpr biimpri rgenw wceq eleq2 + imbi2d ralbidv rspcev mpan2 2ralimi ) AFZBFZGZEHZDAIDBIJZDCKZLZDEMZCENZAB + EEUIUJDFZUHHZLZDEMZUNUQDEUPUJUOUFUGDOPQRUMURCUHECFZUHSZULUQDEUTUKUPUJUSUH + UOTUAUBUCUDUE $. + $} + + ${ + wfax.1 $e |- W = U. ( R1 " On ) $. + + ${ + $d x y z W $. + + $( The class of well-founded sets models the axiom of Extensionality + ~ ax-ext . Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed + by Eric Schmidt, 11-Sep-2025.) (Revised by Eric Schmidt, + 29-Sep-2025.) $) + wfaxext $p |- A. x e. W A. y e. W + ( A. z e. W ( z e. x <-> z e. y ) -> x = y ) $= + ( wtr wel wb wral weq wi cr1 con0 cima cuni trwf wceq treq ax-mp mpbir + traxext ) DFZCAGCBGHCDIABJKBDIADIUBLMNOZFZPDUCQUBUDHEDUCRSTABCDUAS $. + $( $j usage 'wfaxext' avoids 'ax-reg'; $) + $} + + ${ + $d x y z w W $. $d f W $. + + $( The class of well-founded sets models the Axiom of Replacement + ~ ax-rep . Actually, our statement is stronger, since it is an + instance of Replacement only when all quantifiers in ` A. y ph ` are + relativized to ` W ` . Essentially part of Corollary II.2.5 of + [Kunen2] p. 112, but note that our Replacement is different from + Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.) $) + wfaxrep $p |- A. x e. W ( A. w e. W E. y e. W A. z e. W ( A. y + ph -> z = y ) -> E. y e. W A. z e. W ( z e. y <-> E. w e. W ( w e. x + /\ A. y ph ) ) ) $= + ( vf cr1 con0 wal wi wral wrex wel wtr mpbiri wcel wss c0 cima cuni weq + wceq wa wb trwf treq cv wfun cdm crn w3a vex rnex r1elss biimpri sseq2i + eleq2i 3imtr4i 3ad2ant3 ax-gen onwf 0elon sselii eleq2 modelaxrep ax-mp + a1i ) FIJUAUBZUDZACKZDCUCLDFMCFNEFMDCOEBOVLUEEFNUFDFMCFNLBFMGAVKBCDEHFV + KFPVJPUGFVJUHQHUIZUJZVMUKFRZVMULZFSZUMVPFRZLZHKVKVSHVQVNVRVOVPVJSZVPVJR + ZVQVRWAVTVPVMHUNUOUPUQFVJVPGURFVJVPGUSUTVAVBVIVKTFRTVJRJVJTVCVDVEFVJTVF + QVGVH $. + $( $j usage 'wfaxrep' avoids 'ax-reg'; $) + $} + + ${ + $d x y z $. $d ph y z $. $d y W $. + + $( The class of well-founded sets models the Axiom of Separation + ~ ax-sep . Actually, our statement is stronger, since it is an + instance of Separation only when all quantifiers in ` ph ` are + relativized to ` W ` . Part of Corollary II.2.5 of [Kunen2] p. 112. + (Contributed by Eric Schmidt, 29-Sep-2025.) $) + wfaxsep $p |- A. z e. W E. y e. W A. x e. W + ( x e. y <-> ( x e. z /\ ph ) ) $= + ( cv cpw wss wel wa wb wral wrex ssclaxsep cr1 con0 cima cuni wcel pwwf + r1elssi sylbi eleq2i sseq2i 3imtr4i mprg ) DGZHZEIZBCJBDJAKLBEMCENDEMDE + ABCDEOUHPQRSZTZUIUKIZUHETUJULUIUKTUMUHUAUIUBUCEUKUHFUDEUKUIFUEUFUG $. + $( $j usage 'wfaxsep' avoids 'ax-reg'; $) + $} + + ${ + $d x y z w $. $d y z W $. + + $( The class of well-founded sets models the Axiom of Pairing ~ ax-pr . + Part of Corollary II.2.5 of [Kunen2] p. 112. (Contributed by Eric + Schmidt, 29-Sep-2025.) $) + wfaxpr $p |- A. x e. W A. y e. W E. z e. W A. w e. W + ( ( w = x \/ w = y ) -> w e. z ) $= + ( cv cpr wcel wral weq wo wel wi wrex cr1 con0 cima wa eleq2i cuni prwf + anbi12i 3imtr4i rgen2 prclaxpr ax-mp ) AGZBGZHZEIZBEJAEJDAKDBKLDCMNDEJC + EOBEJAEJUKABEEUHPQRUAZIZUIULIZSUJULIUHEIZUIEIZSUKUHUIUBUOUMUPUNEULUHFTE + ULUIFTUCEULUJFTUDUEABCDEUFUG $. + $( $j usage 'wfaxpr' avoids 'ax-reg'; $) + $} + $} + $( (End of Eric Schmidt's mathbox.) $) $( End $[ set-mbox-es.mm $] $)