diff --git a/set.mm b/set.mm index d39cccbe83..9573ce4691 100644 --- a/set.mm +++ b/set.mm @@ -571200,6 +571200,18 @@ Real and complex numbers (cont.) currybi $p |- ( ( ph <-> ( ph <-> ps ) ) -> ps ) $= ( wb biid biass biimpri mpbii ) AABCCZAACZBADIBCHAABEFG $. + $( Suppose ` ph ` , ` ps ` are distinct atomic propositional formulas, and + let ` _G ` be the smallest class of formulas for which ` T. e. _G ` and + ` ( ch -> ph ) ` , ` ( ch -> ps ) e. _G ` for ` ch e. _G ` . The present + theorem is then an element of ` _G ` , and the implications occurring in + the theorem are in one-to-one correspondence with the formulas in ` _G ` + up to logical equivalence. In particular, the theorem itself is + equivalent to ` T. e. _G ` . (Contributed by Adrian Ducourtial, + 2-Oct-2025.) $) + antnest $p |- ( ( ( ( ( ( T. -> ph ) -> ps ) -> ps ) -> ph ) -> ps ) -> ps ) + $= + ( wtru wi wn simplim conax1 mtod syl syl11 mptru pm2.65i notnotri ) CADZBDZ + BDZADZBDZBDZSEZATADOECATNBFTOBRBGZTQEZPTQBUARBFHZPAFIHJKTUBAEUCPAGILM $. $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=