-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelief_plain.py
60 lines (44 loc) · 2.15 KB
/
relief_plain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pandas as pd
import torch
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import NearestNeighbors
class Relief:
def __init__(self, n_neighbors=10):
self.n_neighbors = n_neighbors
def fit(self, X, y):
self.X = X
self.y = y
self.weights = torch.zeros(X.shape[1])
self.classes = torch.unique(y)
self._compute_weights()
def _compute_weights(self):
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(self.X)
for i in range(self.X.shape[0]):
Ri = X_scaled[i]
yi = self.y[i]
same_class_idx = (self.y == yi).nonzero().squeeze()
diff_class_idx = (self.y != yi).nonzero().squeeze()
nn_same_class = NearestNeighbors(n_neighbors=self.n_neighbors).fit(self.X[same_class_idx])
nn_diff_class = NearestNeighbors(n_neighbors=self.n_neighbors).fit(self.X[diff_class_idx])
_, idx_same_class = nn_same_class.kneighbors([Ri], self.n_neighbors, return_distance=False)
_, idx_diff_class = nn_diff_class.kneighbors([Ri], self.n_neighbors, return_distance=False)
hit = X_scaled[same_class_idx[idx_same_class]].mean(axis=1)
miss = X_scaled[diff_class_idx[idx_diff_class]].mean(axis=1)
self.weights -= torch.abs(Ri - hit).sum(axis=0) / (self.X.shape[0] * self.n_neighbors)
self.weights += torch.abs(Ri - miss).sum(axis=0) / (self.X.shape[0] * self.n_neighbors)
def transform(self, X):
return X * self.weights
def load_data(csv_file):
data = pd.read_csv(csv_file)
X = torch.tensor(data.iloc[:, :-1].values, dtype=torch.float32)
y = torch.tensor(data.iloc[:, -1].values, dtype=torch.float32)
return X, y
if __name__ == "__main__":
csv_file = 'dataset/wine.csv' # 替换为你的CSV文件路径
X, y = load_data(csv_file)
relief = Relief(n_neighbors=10)
relief.fit(X, y)
print("Feature Weights:", relief.weights)
X_transformed = relief.transform(X)
print("Transformed Data:", X_transformed)