PROJCRS["WGS 84 / UTM zone 18N",BASEGEOGCRS["WGS 84",ENSEMBLE["World Geodetic System 1984 ensemble",MEMBER["World Geodetic System 1984 (Transit)"],MEMBER["World Geodetic System 1984 (G730)"],MEMBER["World Geodetic System 1984 (G873)"],MEMBER["World Geodetic System 1984 (G1150)"],MEMBER["World Geodetic System 1984 (G1674)"],MEMBER["World Geodetic System 1984 (G1762)"],MEMBER["World Geodetic System 1984 (G2139)"],MEMBER["World Geodetic System 1984 (G2296)"],ELLIPSOID["WGS 84",6378137,298.257223563,LENGTHUNIT["metre",1]],ENSEMBLEACCURACY[2.0]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433]],ID["EPSG",4326]],CONVERSION["UTM zone 18N",METHOD["Transverse Mercator",ID["EPSG",9807]],PARAMETER["Latitude of natural origin",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8801]],PARAMETER["Longitude of natural origin",-75,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8802]],PARAMETER["Scale factor at natural origin",0.9996,SCALEUNIT["unity",1],ID["EPSG",8805]],PARAMETER["False easting",500000,LENGTHUNIT["metre",1],ID["EPSG",8806]],PARAMETER["False northing",0,LENGTHUNIT["metre",1],ID["EPSG",8807]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1]],USAGE[SCOPE["Navigation and medium accuracy spatial referencing."],AREA["Between 78°W and 72°W, northern hemisphere between equator and 84°N, onshore and offshore. Bahamas. Canada - Nunavut; Ontario; Quebec. Colombia. Cuba. Ecuador. Greenland. Haiti. Jamaica. Panama. Turks and Caicos Islands. United States (USA). Venezuela."],BBOX[0,-78,84,-72]],ID["EPSG",32618]]
crs_wkt :
PROJCRS["WGS 84 / UTM zone 18N",BASEGEOGCRS["WGS 84",ENSEMBLE["World Geodetic System 1984 ensemble",MEMBER["World Geodetic System 1984 (Transit)"],MEMBER["World Geodetic System 1984 (G730)"],MEMBER["World Geodetic System 1984 (G873)"],MEMBER["World Geodetic System 1984 (G1150)"],MEMBER["World Geodetic System 1984 (G1674)"],MEMBER["World Geodetic System 1984 (G1762)"],MEMBER["World Geodetic System 1984 (G2139)"],MEMBER["World Geodetic System 1984 (G2296)"],ELLIPSOID["WGS 84",6378137,298.257223563,LENGTHUNIT["metre",1]],ENSEMBLEACCURACY[2.0]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433]],ID["EPSG",4326]],CONVERSION["UTM zone 18N",METHOD["Transverse Mercator",ID["EPSG",9807]],PARAMETER["Latitude of natural origin",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8801]],PARAMETER["Longitude of natural origin",-75,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8802]],PARAMETER["Scale factor at natural origin",0.9996,SCALEUNIT["unity",1],ID["EPSG",8805]],PARAMETER["False easting",500000,LENGTHUNIT["metre",1],ID["EPSG",8806]],PARAMETER["False northing",0,LENGTHUNIT["metre",1],ID["EPSG",8807]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1]],USAGE[SCOPE["Navigation and medium accuracy spatial referencing."],AREA["Between 78°W and 72°W, northern hemisphere between equator and 84°N, onshore and offshore. Bahamas. Canada - Nunavut; Ontario; Quebec. Colombia. Cuba. Ecuador. Greenland. Haiti. Jamaica. Panama. Turks and Caicos Islands. United States (USA). Venezuela."],BBOX[0,-78,84,-72]],ID["EPSG",32618]]
PROJCRS["WGS 84 / UTM zone 18N",BASEGEOGCRS["WGS 84",ENSEMBLE["World Geodetic System 1984 ensemble",MEMBER["World Geodetic System 1984 (Transit)"],MEMBER["World Geodetic System 1984 (G730)"],MEMBER["World Geodetic System 1984 (G873)"],MEMBER["World Geodetic System 1984 (G1150)"],MEMBER["World Geodetic System 1984 (G1674)"],MEMBER["World Geodetic System 1984 (G1762)"],MEMBER["World Geodetic System 1984 (G2139)"],MEMBER["World Geodetic System 1984 (G2296)"],ELLIPSOID["WGS 84",6378137,298.257223563,LENGTHUNIT["metre",1]],ENSEMBLEACCURACY[2.0]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433]],ID["EPSG",4326]],CONVERSION["UTM zone 18N",METHOD["Transverse Mercator",ID["EPSG",9807]],PARAMETER["Latitude of natural origin",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8801]],PARAMETER["Longitude of natural origin",-75,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8802]],PARAMETER["Scale factor at natural origin",0.9996,SCALEUNIT["unity",1],ID["EPSG",8805]],PARAMETER["False easting",500000,LENGTHUNIT["metre",1],ID["EPSG",8806]],PARAMETER["False northing",0,LENGTHUNIT["metre",1],ID["EPSG",8807]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1]],USAGE[SCOPE["Navigation and medium accuracy spatial referencing."],AREA["Between 78°W and 72°W, northern hemisphere between equator and 84°N, onshore and offshore. Bahamas. Canada - Nunavut; Ontario; Quebec. Colombia. Cuba. Ecuador. Greenland. Haiti. Jamaica. Panama. Turks and Caicos Islands. United States (USA). Venezuela."],BBOX[0,-78,84,-72]],ID["EPSG",32618]]
crs_wkt :
PROJCRS["WGS 84 / UTM zone 18N",BASEGEOGCRS["WGS 84",ENSEMBLE["World Geodetic System 1984 ensemble",MEMBER["World Geodetic System 1984 (Transit)"],MEMBER["World Geodetic System 1984 (G730)"],MEMBER["World Geodetic System 1984 (G873)"],MEMBER["World Geodetic System 1984 (G1150)"],MEMBER["World Geodetic System 1984 (G1674)"],MEMBER["World Geodetic System 1984 (G1762)"],MEMBER["World Geodetic System 1984 (G2139)"],MEMBER["World Geodetic System 1984 (G2296)"],ELLIPSOID["WGS 84",6378137,298.257223563,LENGTHUNIT["metre",1]],ENSEMBLEACCURACY[2.0]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433]],ID["EPSG",4326]],CONVERSION["UTM zone 18N",METHOD["Transverse Mercator",ID["EPSG",9807]],PARAMETER["Latitude of natural origin",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8801]],PARAMETER["Longitude of natural origin",-75,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8802]],PARAMETER["Scale factor at natural origin",0.9996,SCALEUNIT["unity",1],ID["EPSG",8805]],PARAMETER["False easting",500000,LENGTHUNIT["metre",1],ID["EPSG",8806]],PARAMETER["False northing",0,LENGTHUNIT["metre",1],ID["EPSG",8807]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1]],USAGE[SCOPE["Navigation and medium accuracy spatial referencing."],AREA["Between 78°W and 72°W, northern hemisphere between equator and 84°N, onshore and offshore. Bahamas. Canada - Nunavut; Ontario; Quebec. Colombia. Cuba. Ecuador. Greenland. Haiti. Jamaica. Panama. Turks and Caicos Islands. United States (USA). Venezuela."],BBOX[0,-78,84,-72]],ID["EPSG",32618]]
"
+ ],
+ "text/plain": [
+ " Size: 20GB\n",
+ "dask.array\n",
+ "Coordinates:\n",
+ " * y (y) float64 88kB 5.1e+06 5.1e+06 5.1e+06 ... 4.99e+06 4.99e+06\n",
+ " * x (x) float64 168kB 5e+05 5e+05 5e+05 ... 7.098e+05 7.098e+05\n",
+ " spatial_ref int32 4B 32618\n",
+ " * time (time) datetime64[ns] 176B 2023-01-17T15:45:59.024000 ... 20..."
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ndsi_masked"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "33286a3e",
+ "metadata": {},
+ "source": [
+ "### 🔍 Comparing Raw and Masked NDSI\n",
+ "\n",
+ "The unmasked NDSI array includes values for all pixels, regardless of cloud or shadow contamination. \n",
+ "In contrast, `ndsi_masked` applies a filter using the SCL layer to remove unreliable observations, replacing them with `NaN`.\n",
+ "\n",
+ "By comparing the two arrays:\n",
+ "- The shape and dimensions remain the same.\n",
+ "- The masked version is **sparser**, containing only valid surface pixels.\n",
+ "- The difference in data volume highlights how much of the imagery was affected by cloud or shadow cover.\n",
+ "\n",
+ "This step ensures that subsequent analyses or visualizations reflect only high-quality observations."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "40e07e67",
+ "metadata": {},
+ "source": [
+ "### 📈 Generating an NDSI Time Series\n",
+ "\n",
+ "To understand how snow presence changes over time, we compute the mean NDSI for each scene by averaging across all valid (non-masked) pixels. \n",
+ "This produces a 1D time series showing the evolution of surface conditions in your selected area.\n",
+ "\n",
+ "Plotting this time series provides a clear view of when snow was present, and how it varied across the selected date range.\n",
+ "It also helps identify scenes that were too cloudy to yield valid NDSI values (which will appear as gaps or drops in the plot)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "6ef79505",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/zacdez/Documents/github/PlanetaryComputerExamples/.venv/lib/python3.11/site-packages/rasterio/warp.py:387: NotGeoreferencedWarning: Dataset has no geotransform, gcps, or rpcs. The identity matrix will be returned.\n",
+ " dest = _reproject(\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAGJCAYAAADLxBNqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmJ5JREFUeJzt3Qd408UbB/C3u7TQMsoehbL3BtlDEBQQnKhsFRXEhQsQQeSvOBFUEAUZCiqKojIE2TJlD9mjbOgAuunO//le+YWkTdKmNM36fp4nTzMuySW5/Jr37r07D51OpxMiIiIiIiIicjqe9q4AEREREREREeUPg3oiIiIiIiIiJ8WgnoiIiIiIiMhJMagnIiIiIiIiclIM6omIiIiIiIicFIN6IiIiIiIiIifFoJ6IiIiIiIjISTGoJyIiIiIiInJSDOqJiIiIiIiInBSDeiIiIqICVrVqVRk6dKi9q0FERG6AQT0REbml+fPni4eHhzpt2bIlx+06nU4qV66sbu/du7c4egCJer7wwgs5btu4caO6bcmSJSZfO07+/v5SoUIF6dGjh3z++ecSHx9v8nnwPt17771SsWJFdZ8qVapInz595IcffjAqh8ccNWpUnuqelpamnrNly5ZSrFgxKVq0qDqP63Cbo9Dex7yciIiICpN3oT4bERGRg0FwiqC0ffv2Rtdv2rRJLl68KH5+fuIsZs+eLWPHjlUBel68++67Uq1aNRU8X716VQWuL7/8skydOlX+/PNPadSokb7sL7/8Iv3795cmTZrISy+9JCVKlJDw8HD5559/1PM+8cQTVtc3MTFRevXqpd5rdJxgZNvT01NWrVqlnuO3336TFStWSGBgoNhb3bp15fvvvze6Du81OiHeeuutHOWPHz+uXgsREZGtMagnIiK3dt9996mAFSPD3t63/y0i0G/evLlER0eLM6hfv74KJD/44AP1WvICo+4tWrQwClLXr1+vAuz7779fjh49KkWKFFG3vfPOO1KvXj3ZsWOH+Pr6Gj1OZGRkvuo8evRoFdB/8cUXRiP7I0aMkBkzZqjrXnvtNfnqq6+ksCBDIzk5Wf+6NWXLlpWBAwcaXYf3OiQkJMf14EydQURE5NzYhUxERG7t8ccfl2vXrsmaNWv016Wmpqp0dXOjz5mZmTJt2jQVSGOkHwHfs88+Kzdu3DAq98cff6iRaIycI8irXr26TJ48WTIyMozKde7cWRo0aCBHjhyRLl26SEBAgEpx/+ijj6xKwR88eLAaNb98+bLkV9euXeXtt9+Wc+fOycKFC/XXnz59WqXFZw/ooUyZMlY/D7Igvv32W/V8plL1n3/+efVezJkzR5UFvEe4ztTngffr4YcftvozwvuGTozVq1erDg4E819//bUU9Jx6bcoDpjC8+OKLUrp0aSlevLiqE9pbTEyM+vyQAYHTG2+8oToYsr/OvLwmIiJyLwzqiYjIrSH4atOmjfz444/66/766y+JjY2Vxx57zOR9EEi9/vrr0q5dO5k+fboMGzZMFi1apOakG84DRyCH9GyMSKMcRv4nTJggY8aMyfGYCMx69uwpjRs3lk8//VTq1Kkjb775pqpLXiENPD09XY0g34lBgwapv3///bf+utDQUFm3bp0+wL5TeF3o3EAgaw5uw+tBOj4g/R/p/pgqYAiBMjoyDD+vvH5GgAwHdO50795dlcUUA1vBugcnT56USZMmqWyIb775RnWiYG0CvB/vv/++mgry8ccf50j3t+Y1ERGRG9ERERG5oXnz5mEYVLdr1y7dl19+qStWrJguKSlJ3fbII4/ounTpos6HhobqevXqpb/f5s2b1f0WLVpk9HirVq3Kcb32eIaeffZZXUBAgC45OVl/XadOndR9v/vuO/11KSkpunLlyukeeuihXF+LYR2HDRum8/f3112+fFld3rBhg3rsX375xeRrNyc4OFjXtGlT/eVvv/1W3cfX11e9N2+//bZ6LzIyMnLcF+Wef/55i3V++eWXVbl9+/aZLbN3715VZvTo0ery8ePH1eUvvvjCqNzIkSN1RYsW1b/f1nxGeO9wHW6zVv369dVnZwoed8iQITne8x49eugyMzP117dp00bn4eGhe+655/TXpaen6ypVqmT02Na8JiIici8cqSciIrf36KOPys2bN2X58uVq5Xf8NZd6j/n3wcHBalQX8+21E0bhMSq/YcMGfVnDedl4XJTr0KGDJCUlybFjx4weF/c1nJuNNPdWrVrJmTNnrHot48ePL5DRetTHcBX8J598Uo2YY6oARsYxjQCvpWbNmrJt2zarH197bKx4b452W1xcnPpbq1YtNYq+ePFifRmMbmOqBEa6tffbms8IsFggRrsLw1NPPWW0Qn7r1q1Vmj2u13h5eampAIafvbWviYiI3AcXyiMiIreH+c3dunVTi+Mh4EagaDg/2xBSp5Gab24eueGicYcPH1ZBNhaf0wJTDR7DUKVKlXJsh4a51QcPHrTqtYSFhan0eaR1m0rzz6uEhIQcrxGBL054j/bs2aOC61mzZqk56eiksGZuvRawm9s+z1zgjxT8cePGyaVLl9Q8eqzYj/cc1+fnM9KC+sKCbQANIVAHbJ+Y/XrDufLWviYiInIfDOqJiIhE1Mj88OHD1XxtrAqPRcxMwWJlCKwwl9lcBwFg4bNOnTpJUFCQ2joOi+RhcbO9e/equfJ4HEMYnTUl+2JpeZ1bj/nYH374ofTr18/q+2PePALIGjVqmLwdC/lhlB4nrP6O+eGYIz9kyBCrtogDdFqYm8OudWhg1X0Ngnes0o+Ra2y/9/PPP6sAGOsRWPsZabKvdG9L5j5nU9cbfvbWviYiInIfDOqJiIhE5IEHHlALkWHLNsP07uwQnK9du1YtVmYpGMQIMlbVx17rHTt21F+Pvd1tDXVEKj9WcUd6t7W0BdrykpKubYl35coVq54DHScIZPFc5hbL++6779Q2g4YBO0bVMS0BnxFWzcf7i44Lwy3k8voZORNXfE1ERFQwOKeeiIjo1hxy7IeO/dgxP9vS/Huk52NOeXaYy44ResORV8PRVmxdNnPmTCkMSPvHiujWbIsHmCqA14bgecCAAfrrsfK9KStXrlR/a9eubdXzIN0cq7cjUDW1Dz3S+lEXzDXH1ARDGK1H58vcuXPVvHLD1HtrPiNn4oqviYiICgZH6omIiG7JS/o4Uuoxoj9lyhTZv3+/3HPPPeLj46PmPCMlHFuNYT5+27Zt1Zx4PCb2Jcd8eYxK5yed/k5G6xcsWGC2DFLmMRceQWFERIQKotesWaO2r/vzzz/VdAFN3759VaCPDg88dmJiogrIly1bpvavt9QRYs5nn32mnn/kyJFqET5tRB57xv/xxx/qvcb2fqYC3Ndee02dSpYsqdZDyM9n5Exc8TUREVHBYFBPRERkJYwiY9VxpLdj0TakiGO/ewTRSI+GUqVKqVX0X331VTVqjgAft999992FttI6nnfhwoVqhNeUCRMm6FfaR3DcsGFDmTZtmhpBz74q/Zw5c1SgjTns2BMenRNYlA/z97FGAN6D/GRHIAMA2QuoJ/Zgx+PWqVNH1QPBPgLX7DByj06TrVu3ytNPP22yTF4+I2fjiq+JiIjunAf2tSuAxyEiIiIiIiKiQsY59UREREREREROikE9ERERERERkZNiUE9ERERERETkpBjUExERERERETkpBvVERERERERETopBPREREREREZGT4j71ucjMzFT78WK/Xg8PD3tXh4iIiIiIiFycTqeT+Ph4qVChgnh6Wh6LZ1CfCwT0lStXtnc1iIiIiIiIyM1cuHBBKlWqZLEMg/pcYIQe5syZI/369RMfHx97V4mcWFpamvz9999yzz33sC2RTbCNkS2xfVFhYVsjW2MbI0dvX3FxcWpwWYtHLWFQnwst5T4gIECCgoL4pac7/oKzLZEtsY2RLbF9UWFhWyNbYxsjZ2lfeZkCzoXyiIiIiIiIiJyU0wX1M2bMkKpVq4q/v7+0bt1adu7cabbs/PnzVc+G4Qn3IyIiIiIiInIFThXUL168WEaPHi0TJ06UvXv3SuPGjaVHjx4SGRlp9j5Iebhy5Yr+dO7cuUKtMxEREREREZGtOFVQP3XqVBk+fLgMGzZM6tWrJ7NmzVJzFebOnWv2PhidL1eunP5UtmzZQq0zERERERERka04zUJ5qampsmfPHhk7dqz+OuzX161bN9m+fbvZ+yUkJEhoaKjab75Zs2by/vvvS/369c2WT0lJUSfDVQcNFzwguhNaG2JbIlthGyNbYvuiwsK2RrbGNkaO3r6sua/TBPXR0dGSkZGRY6Qdl48dO2byPrVr11aj+I0aNZLY2Fj55JNPpG3btnL48GGze/1NmTJFJk2aZPK2NWvWFMArIWJbIttjGyNbYvuiwsK2RrbGNkaO2r6SkpJcL6jPjzZt2qiTBgF93bp15euvv5bJkyebvA8yATBvP/v+gNC9e3eH3PIiI1Mnu8/dkMj4FClTzE9ahJYQL8/ctz6gwoceN3y5HbUtkfNjGyNbYvuiwsK2RrbGNkaO3r4MM8ZdJqgPCQkRLy8viYiIMLoelzFXPi/whjZt2lROnTpltoyfn586mbu/o33pV/13RSYtOyJXYpP115UP9peJfepJzwbl7Vo3Ms8R2xK5FrYxsiW2LyosbGtka2xj5Kjty5r7Oc1Ceb6+vtK8eXNZt26d/jrMk8dlw9F4S5C+f+jQISlf3jWCXQT0IxbuNQro4WpssroetxMREREREZHrcpqgHpAWP3v2bFmwYIEcPXpURowYIYmJiWo1fBg8eLDRQnrvvvuu/P3333LmzBm1Bd7AgQPVlnZPP/20ODuk3GOEXmfiNu063I5yRERERERE5JqcJv0e+vfvL1FRUTJhwgS5evWqNGnSRFatWqVfPO/8+fNqRXzNjRs31BZ4KFuiRAk10r9t2za1HZ6z2xl+PccIvSGE8rj9zSUHpXOd0lKjTFGpWipQ/H28CrWeREREREREZDtOFdTDqFGj1MmUjRs3Gl3+7LPP1MkVRcabD+gNLdl7UZ0Aa+dVLhkg1UsXVUF+9dKB+vPFA3xtXGMiIiIiIiISdw/qKUuZYv55KtepVojEJafLqcgEiU9Ol3PXktRp/bFIo3KlAn2lugr0jQP+isWLiCdX0iciIiIiInJIDOqdVKtqJdUq91gUz9SseYTh5YL9Ze7QVmp7O51OJ1EJKXI6MlFORSXI6cgEOX3r7+XYZLmWmCrXwq+rtH5D/j6eEhaiBfq3/pYJZCo/ERERERGRA2BQ76QQqGPbOqxyjwDeMLDXxtVxu7ZfvYeHhxrdx6lN9VJGj5WYki5nohJVkI8Rfe3v2WuJkpyWKUeuxKmTIS2Vv0ZpBPlZI/ta4M9UfiIiIiIiosLBoN6JYR/6rwY2y7FPfTkr96kP9POWhpWC1clQekamnL+eJKdNBPyGqfzrsqXyhxT1lTB9Gv/tdP4KwUzlJyIiIiIiKkgM6p0cAvfu9cqptHksnoeReKTmayP0d8Lby1MF5zh1l6wdBkBL5c8K8hNzpPJHJ6RKdELOVP4iPl4SZrA4n/a3akiA+HkzlZ+IiIiIiMhaDOpdAAL47Cn1tmSYyt+2eojRbQkp6RIehXn78Vnz928F/Ejlv5mWIYcvx6mTIfQ/VLm1Kj9S+bNS+gOlRuliEhzgk+96ZmTqbNLZQURERERE5CgY1FOBKmomlT8tI1MuXE+6PbqvpfMjlT8lXc5eS1InU6n8xsF+1uh++SB/i6n8q/67kmNaQnkrpyUQERERERE5Ogb1VCh8DFL5DalU/vgUgxX5b4/uXzFI5f/XTCq/8bz9rFT+Dcci1QKC2XcFwE4BuB7rEDCwJyIiIiIiV8CgnuxKpfIH+auTqVT+Mwj29aP6WdvxnY02n8qPsXuM4Jva5k9363aM4GMdAqbiExERERGRs2NQTw6dyt+oUnF1yp7Kr1blj0y4NcKfFeyfuZXKj7n05uAWZABgrn1hrkNARERERERkCwzqySlT+dU8+9JF5Z5sqfwLd5yTt/84nOtjYPE8IiIiIiIiZ+dp7woQFWQqf40yxfJUFqvhExEREREROTsG9eRSsG0dVrm3NFu+bJCfKkdEREREROTsGNSTS8Hid9i2DswF9lg5PzU9s1DrRUREREREZAsM6snlYLs6bFtXLtg4xb50MT8J8PWSs9eS5OXF+ywuqEdEREREROQMuFAeuWxgj23rsMo9FsXDHHqk3O85d0MGzvlXVh+OkCkrj8r43lmj+kRERERERM6II/Xk0qn42Laub5OK6i8uI7D/+JFG6vY5W8Jlwbaz9q4mERERERFRvjGoJ7eDIP/1HrXV+UnLDsvaIxH2rhIREREREVG+MKgntzSyc3V5rGVlwbT6F37cJ4cuxtq7SkRERERERFZjUE9uu6f95H4NpEPNELmZliFPLtglF28k2btaREREREREVmFQT27Lx8tTZg5oJnXKFZOo+BR5cv4uib2ZZu9qERERERER5RmDenJrxfx9ZO7QllI2yE9ORCTIyEV7uIc9ERERERE5DQb15PYqFC+iAvtAXy/ZeuqavLX0kOh03MOeiIiIiIgcH4N6IhGpXyFYvhzQTG1798uei/Ll+lP2rhIREREREZHrBfUzZsyQqlWrir+/v7Ru3Vp27tyZp/v99NNPanG0fv362byO5Jy61C4j7/atr85/uuaELN130d5VIiIiIiIicp2gfvHixTJ69GiZOHGi7N27Vxo3biw9evSQyMhIi/c7e/asvPbaa9KhQ4dCqys5pwGtQ+XZTmHq/BtLDsqOM9fsXSUiIiIiIiKzvMWJTJ06VYYPHy7Dhg1Tl2fNmiUrVqyQuXPnypgxY0zeJyMjQwYMGCCTJk2SzZs3S0xMTL6eOznZSxITRXx8jK/38hLx9799GWXM8fQUKVIkf2WTkkTMTfP28BAJCMhf2Zs3RTItrAsXGJi/ssnJeO8Lpizqi3pDSopIenrBlMX7i/cZUlNF0m4tfD+qfR0Jv5wiqw5flafn7JMfhreWBqHFTJY1Be0B7cJUWZw3bEuGZXEbypvj5yfi7W19WbwHeC/M8fW93a6tKYvPDJ+dOSiH8taWRRtDWyuIsngP8F4AvhP4bhREWWu+94V9jMjexoDHiII9RtxpWUvHCEtlHeUYYe7/YfayPEY45jHCFEc9RlhqazxGOO4xwtl+R5hrY8BjhGMfIxz5d0RamvFryc8xwtLnl4POSaSkpOi8vLx0S5cuNbp+8ODBuvvvv9/s/SZMmKDr16+fOj9kyBBd3759LT5PcnKyLjY2Vn+6cOECmqxOJFaX1XyNT/fem6FLTU3VnwICMk2Ww6ljR+OyISHmyzZvblw2NNR82bp1M43K4rK5sngcw7J4HnNlUT/Dsqi/ubJ43YZl8b6YK4uTYdkHH7Rc9saN22UHDbJc9tKl22Wfey7dYtkTJ26XHT3actkNWxP1ZcePt1x227Y0fdkpUyyXXbPmdtnp0y2X/f3322XnzEmzWPaHH26XxXlLZfFYWlk8h6WyqKNWFnW3VBavXSuL98RSWbynWtl9+1ItlsVnpZXFZ2ipLNqAVhZtw1JZtC2tLNqcpbJos4Zt2FJZHiPc4xiBdusOx4hff71psSyPEVknHiPu/BjRo4fl9s5jhGMeI5zpd0RiYqLu669XWyzLY4TjHiOc4XfE11+vVu0s/8cIxJ+iYtLcOM1IfXR0tBp1L1u2rNH1uHzs2DGT99myZYt8++23sn///jw/z5QpU9Sofl4h9X/lyn/1lzMyeplNgLh27bqsXLlVfzk1tSf6Qk2WjY2NlZUr/9FfTkrqjr4hk2UTEuJl5coNBpe7iEiQybJJSTdl5co1Bs/TUURKmCybmpoqK1euMqh/OxEJMVkWn83KlSv1lyMjW4tIOTHHsOzVqy1EpKLZsqtXrxZ//6zutYsXm4pIFbNl165dK8HBWV3P5841EpFqZstu2LBBypbN6so9c6aeiNQ0W/a1H3fKm1djxddL5OTJ2iJSx2zZrVu3SmRkVkbIsWM1sAyf2bI7duyQxMSsFP/Dh1FX1Nm03bt3i0iEOn/gQGURaWa27L59+yQg4PKt8xVEpKXZsgcOHJSVKy/ceg58v+4yW/bw4cOycmW4On/oUCkRaW+2LL6XK1dmLTh48mRxEelktuzJkydl5crj6vz588VEpKvZsmfOnJGVK4+o8xER6GK+x2zZc+fOy8qVB9X52Fh0y99rtuzFixdl5cp96jxGh0R6my179eoVWbkSn4emr9myPEa4xzECmWDnzsWr8658jNi3j8cI4DHC9seI6GgeI5zxGOFsvyNEDIaqTeAxwnGPEc7wOwLWrFlT4McIUzwQ2YsTuHz5slSsWFG2bdsmbdq00V//xhtvyKZNm+Tff283doiPj5dGjRrJzJkz5d57s76AQ4cOVen3v//+u9nnSUlJUSdNXFycVK5cWebOXSy9e/cWn2z5OUyJcc6UmLymwp29liiD5u6RuPRkuadeGfniscaSke5xB+n3abJ+/Xrp2rWraktMm8tZlqm1d5p+b9zGgMeI/JVlam3O7/3Nm2ny11/G7ctcWR4jHPMYYYojHiPi49NkzRrzbY3HCMc8RjjT7wj8v1y9eo20b9/dZBsDHiMc9xjh6L8j0tLSZMuWNdKjR1b7ys8xAnFoaGiI6oAJCjLdiaJxmpH6kJAQ8fLykoiIrB5GDS6XK5ezl+b06dNqgbw+ffror8u81Uq8vb3l+PHjUr169Rz38/PzU6fs0HtTvLiP2S+9pjg6EvPImrLBwbYpm8vLcfuyTYoXl7nDm8qA2f/KmqOR8vGaU/J273r5flx8Qc21JVw0PAjm9rjWlDU8aBdkWcN/MgVVFkx8BQukrPYPv6DL2up7n59jhKU2lr2ss38/3bGsvY8R1vw/5DHCMY8RBV3WVu29WDHr2pot6uCMZe19jHC23xEIovLSxjQ8Rlhf1lG+G4VdFr/H0L7QtrJO1j+up6eP661+7+vrK82bN5d169YZBem4bDhyr6lTp44cOnRIpd5rp/vvv1+6dOmizmP0nSgvWlYtKZ882lid/3ZLuMzfmpU2RkREREREZG9OM1IP2M5uyJAh0qJFC2nVqpVMmzZNEhMT9avhDx48WKXoY1489rFv0KCB0f2L3+quyn49UW7ub1xBLt5Iko9WHZd3lx+RiiUCpHs94/UdiIiIiIiICptTBfX9+/eXqKgomTBhgly9elWaNGkiq1at0i+ed/78efHUJiMQFbARnarLhetJ8uPOC/Lij/tk8bN3SaNKVuQ1ERERERERuXNQD6NGjVInUzZu3GjxvvPnz7dRrcgdeHh4yLt9G8ilmGT550SUPDl/t/z+fFupVCKPk9KIiIiIiIgKGIe1iazg4+UpM55oKnXKFZPohBQZNm+XxN60sJQlERERERGRDTGoJ7JSMX8fmTespZQN8pOTkQkyYuEeSU23sP8GERERERGRjTCoJ8qH8sFFZO7QlhLo6yXbTl+Tsb8dEp25DTuJiIiIiIhshEE9UT7VrxAsXw5oJl6eHvLr3ovy+bpT9q4SERERERG5GQb1RHegS+0yMrlv1haJn609IUv3XbR3lYiIiIiIyI0wqCe6Q0+0riLPdaquzr+x5KBsP33N3lUiIiIiIiI3waCeqAC80aO29GpUXtIydPLs97vlVGS8vatERERERERugEE9UQHw9PSQTx9pLM1DS0hccroMnbdLouJT7F0tIiIiIiJycQzqiQqIv4+XzB7cQqqWCpCLN27K0wt2yc3UDHtXi4iIiIiIXBiDeqICVDLQV+YNayUlAnzkwMVYeemnfZKRya3uiIiIiIjINhjUExWwaiGBasTe19tT/j4SIe+tOGrvKhERERERkYtiUE9kAy2qllRz7GHu1nCZtzXc3lUiIiIiIiIXxKCeyEb6NK4gb/aso86/u/yI/H34qr2rRERERERELoZBPZENPdcpTB5vVUV0OpEXf9onBy/G2rtKRERERETkQhjUE9mQh4eHTO5bXzrVKi3JaZny7KJ9ci3Z3rUiIiIiIiJXwaCeyMa8vTxlxoBmUrd8kEQnpMrXx7wk7maavatFREREREQugEE9USEo6uctc4e2kLJBfhJx00Oe/3G/pKZn2rtaRERERETk5BjUExWS8sFFZPbAZuLnqZMd4TdkzG8HRYfJ9kRERERERPnEoJ6oENUtX0yG1coUL08P+W3vJZm+7qS9q0RERERERE6MQT1RIatbQifv9K6rzk9be1KW7Llo7yoREREREZGTYlBPZAePtawkIzpXV+fH/nZQtp2OtneViIiIiIjICTGoJ7KT1++pLb0blZe0DJ08+/0eORkRb+8qERERERGRk2FQT2Qnnp4e8skjjaVFaAmJT06XofN2SWQ8N7EnIiIiIqK8Y1BPZEf+Pl7yzeAWUi0kUC7F3JSnF+yWpNR0e1eLiIiIiIicBIN6IjsrGegr84a2lBIBPnLwYqy89NN+ycjkVndEREREROSCQf2MGTOkatWq4u/vL61bt5adO3eaLfvbb79JixYtpHjx4hIYGChNmjSR77//vlDrS5QXVUMCZc6QFuLr7SlrjkTI/1YcsXeViIiIiIjICThVUL948WIZPXq0TJw4Ufbu3SuNGzeWHj16SGRkpMnyJUuWlLfeeku2b98uBw8elGHDhqnT6tWrC73uRLlpHlpSPnu0iTo/b+tZmbsl3N5VIiIiIiIiB+ctTmTq1KkyfPhwFZjDrFmzZMWKFTJ37lwZM2ZMjvKdO3c2uvzSSy/JggULZMuWLaozwJSUlBR10sTFxenPp6WlFeCrIXektSFzbemeuiHyRo+a8tHqkzJ5xREpH+Qr3eqWKeRakiu3MaI7wfZFhYVtjWyNbYwcvX1Zc18PnU7nFJN3U1NTJSAgQJYsWSL9+vXTXz9kyBCJiYmRP/74w+L98TLXr18v999/v/z+++/SvXt3k+XeeecdmTRpUo7rf/jhB/X8RLaGb+TP4Z6yLcJTfDx18kL9DAktau9aERERERFRYUlKSpInnnhCYmNjJSgoyDVG6qOjoyUjI0PKli1rdD0uHzt2zOz98CZUrFhRjb57eXnJzJkzzQb0MHbsWJXibzhSX7lyZXUe9/Px8SmQ10PuCT1ua9asybUt9cjIlGcX7ZN/Tl6TBWcC5JdnW0nlEuxUooJrY0T5wfZFhYVtjWyNbYwcvX0ZZoznxmmC+vwqVqyY7N+/XxISEmTdunUqYA8LC8uRmq/x8/NTJ1PwgfBLTwUht7aEm2YObCGPzNouR6/EyTML98uvz7WV4AC2P8obHq/Ilti+qLCwrZGtsY2Ro7Yva+7nNAvlhYSEqJH2iIgIo+txuVy5cmbv5+npKTVq1FAr37/66qvy8MMPy5QpUwqhxkR3pqift9rqrlyQv5yKTJBnF+6W1PRMe1eLiIiIiIgciNME9b6+vtK8eXM12q7JzMxUl9u0aZPnx8F9DBfCI3Jk5YL9Zd6wlirA33Hmuoz59aBaH4KIiIiIiMipgnpA6vzs2bPVCvZHjx6VESNGSGJion41/MGDB6s58RqMyGMuw5kzZ1T5Tz/9VO1TP3DgQDu+CiLr1C0fJDMGNBMvTw/5bd8lmbb2pL2rREREREREDsKp5tT3799foqKiZMKECXL16lWVUr9q1Sr94nnnz59X6fYaBPwjR46UixcvSpEiRaROnTqycOFC9ThEzqRTrdLyv34NZOxvh2T6upNSuWSAPNy8kr2rRUREREREduZUQT2MGjVKnUzZuHGj0eX//e9/6kTkCh5vVUUuXE+SmRtPqzT88sH+0q5GiL2rRUREREREduRU6fdE7u61e2pLn8YVJD1TJ88t3CMnIuLtXSUiIiIiIrIjBvVETsTT00M+friRtKxaQuKT02XYvF0SGZ9s72oREREREZGdMKgncjL+Pl7yzaAWUi0kUC7F3JSn5u+WpNR0e1eLiIiIiIjsgEE9kRMqEeir9rAvGegrhy7Fyos/7peMTG51R0RERETkbhjUEzmpqiGBMntwC/H19pS1RyNk8vIj9q4SEREREREVMgb1RE6seWgJmda/iTo/f9tZmbsl3N5VIiIiIiKiQsSgnsjJ3dewvIy7r446P3nFEVl9+Kq9q0RERERERIWEQT2RCxjeIUwG3lVFdDqRl37aJ/svxNi7SkREREREVAgY1BO5AA8PD3mnT33pUru0JKdlytMLdsmF60n2rhYREREREdkYg3oiF+Ht5SlfPtFM6lcIkuiEVBk6b6fEJqXZu1pERERERGRDDOqJXEign7fMHdpSygf7y+moRHl24W5JSc+wd7WIiIiIiMhGGNQTuZiyQf4qsC/q5y07zlyXMb8eEh0m2xMRERERkcthUE/kguqWD5KZA5qJl6eHLN13ST5be9LeVSIiIiIiIhtgUE/kojrWKi3v9Wugzn++7qT8svuCvatEREREREQFjEE9kQt7rFUVeb5LdXV+7G+HZOupaHtXiYiIiIiIChCDeiIX92r32nJ/4wqSnqmT577fI8evxtu7SkREREREVEAY1BO5OE9PD/n4kUbSqmpJiU9Jlyfn75LIuGR7V4uIiIiIiAoAg3oiN+Dn7SVfD2ouYSGBcinmpjy5YJckpqTbu1pERERERHSHGNQTuYkSgb4yb1hLKRnoK/9dipMXf9wnGZnc6o6IiIiIyJkxqCdyI6GlAmX24Bbi5+0p645FyrvLDnMPeyIiIiIiJ8agnsjNNA8tIdP6NxEPD5EF28/J3K1n7V0lIiIiIiLKJwb1RG7o3oblZdy9ddX5/604Iqv+u2rvKhERERERUT4wqCdyU093qCaD7goVZN+/vHif7Dt/w95VIiIiIiKymYxMnWw/fU3+2H9J/XWV9aW87V0BIrIPDw8PmdinnloNf/2xSHl6wW5ZOrKdVCkVYO+qEREREREVqFX/XZFJy47IldjbWzuXD/ZXv4d7NigvzszpRupnzJghVatWFX9/f2ndurXs3LnTbNnZs2dLhw4dpESJEurUrVs3i+WJ3I23l6d88XhTqV8hSK4lpsrQ+TslJinV3tUiIiIiIirQgH7Ewr1GAT1cjU1W1+N2Z+ZUQf3ixYtl9OjRMnHiRNm7d680btxYevToIZGRkSbLb9y4UR5//HHZsGGDbN++XSpXriz33HOPXLp0qdDrTuSoAv28Ze7QllIh2F/ORCXKs9/vkZT0DHtXi4iIiIjojmVk6tQIvalEe+063O7MqfhOlX4/depUGT58uAwbNkxdnjVrlqxYsULmzp0rY8aMyVF+0aJFRpfnzJkjv/76q6xbt04GDx5s1XNnZGRIampqju2/PD09xdv79tuIMpbSnX18fPJVNi0tzezWY7YqC76+vvkqm56eLpmZmQVSFvVFvW1ZFp8vTgVRFu0B7cJUWbyHhm3JUllrHtdSWbwHeC/M8fLykrJB/jJ3WEt59Kttsic8St78ea98+FAj/Ws2LItTXh83P2XxvuB9Koiyht9PW5XN7btc2MeI7G3MUllrHtccHiOsL1sY3/uCPkYYfpfN/T80VZbHCMc7RhRm2Ts9RlhqazxGFF5ZW32XHeUYYa6NAY8Rti1bWL8jtp+KlKjYRLOBb7p4qhH8neHXpWVocIEcI7K/lvwcIyx9fk4b1ONF7dmzR8aOHWvUyJFSj1H4vEhKSlJvcMmSJc2WSUlJUSdNXFyc+nv48GE5ffp0jvLVq1eX/v376y9/8sknZr/EVapUkYEDB+ovT5s2TW7evGmybPny5fWdF9q0g9jYWJNlQ0JC5JlnntFf/uabbyQ6Otpk2eDgYHn++ef1l+fNmydXrphONylSpIi88sor+ssLFy6U8+fPm22Ir7/+ulFWhan3SzNu3Dj9+d9++02OHTtmtuxrr72m/2IuW7ZMDh06ZLbsSy+9JIGBger8qlWrVEaHOSNHjpTixYur8+jo+ffff82WRWdS6dKl1fl//vlHtmzZYrbs0KFDpUKFCur8jh07ZP369TnKaK9hwIABEhoaqs7v3r1b/v77b7OP++ijj0qNGjXU+YMHD8ry5cvNln3ggQekbt2s1e2PHj0qS5cuNVu2d+/e0qhRI6leqohM7FRC/tu8SuTkPvngg5U5yiLTpUWLFur8uXPncnScGeratavcdddd6vzly5dl/vz5Zsu2b99eOnbsqM5HRUWpqTPmYNrN3Xffrc7HxMTIzJkzzZZt1qyZ9OzZU51PTEyU6dOnmy3bsGFD6dOnj/54g++yOXXq1JEHH3xQf3nKlClmy9rrGGH4PeExwvmOERpHOkbAiRMn1Ptr7j3mMcJ5jhGGHPEYsWTJEjlz5ozZtsZjhGMeI06dOiU///yz2bKOdIzA9yy37zKPEa7xO2LXxlUyqIj5LZy/v9lU0sVLrsQkyp8HNhXYMQLfIe2zys8xIjnZeKqASwT1aDjosShbtqzR9bhs6UBu6M0331QHSXQEmIMv1aRJk/JcLxw4Vq68HfxY6oG5du2aUVlLvS/4IWJYFh0S5iQkJBiVxWVz8DiGZfE85qB+hmVRf3Pwug3L4n2xxLCsuS+6ZvXq1foe1YsXL1osiy+M1puZW1lMy/Dz81Pnc5uSgS8XDjx5qe+2bdskICBrsTlzU0M0+GeNDqO8vGe7du1SP6hz+yxg3759Eh4enutnDAcOHNC/V4lmDuYa1FV7TfHx8RbL4nt5/fr1XNsvnDx5Ut9uzf3z0eBHntbxZtgBZwr+MWhtzVIPP+A90Mpa+h5rbcCwDVvCY0QWHiNc4xhh7gefhseILDxG3PkxwlzAoOExIguPEXd2jMgNjxGu8TsiMdZyG9acObxffGMK7hgBa9asKfBjhCkeOks5Dg4EPXQVK1ZUB7o2bdror3/jjTdk06ZNFns+4IMPPpCPPvpIzbPXehPzOlKPufjff/+96ok0TCcBpsSYLsvUWvPp9+hxR+8zHtNR0+a+2HBa5mw5K96eHjLjiSZyV7WSDps2x9TanOn3hm3MUllrHtccHiPcK7UW/x8xEmjYvsyV5THCMY8RhVn2To4RCMzWrl1rtq3xGFF4ZR0hpd4WxwiUwfGsc+fOJtsY8Bhh27KF9TsiJTVNun+2WaISTHfmZIinlAv2lw2jO4ouM6PA0u8RdyI7BffJzzECcSgGpNFZFhQUJC4xUo+0D3wBIyIijK7H5XLlylm8L9JUENTjn4OlgB7Q46r1uhrCcyPVwtyXXpPb7Szr3mXxBTfXlmxVBzDVpi2VfbNXQ7mSkCF/7L8sL/9yRJaMaCu1yxW748fNK8MDsTOUdaS2ZqmNFVYdWNa5ylr7/czr/0NrH5fHCJbNjr+9HKOsLb/L9j5GIIjK6/HMmse1tqwjfM6uXrZepZKy7ljOzBdt9aiJfeqLv1/eP7Pc6oDfY1oHh3ay9nFzy/hwytXv8cVo3ry5SnnQoGcElw1H7rPD6PzkyZPVnAdtDg8RWYaD0EcPN5JWVUtKfEq6DJu3UyLi8j6vh4iIiIjIEZyJSpBNJ7LS9UsEGAfuGKH/amAzp9+n3mlG6gHb2Q0ZMkQF561atVKLP2DRCm2RB6xojxR9bbGJDz/8UCZMmCA//PCD2tv+6tWr6vqiRYuqExGZ5+ftJd8Mbi4PfrVNbXX31IJdsviZNmoLPCIiIiIiZ/D+ymOSnqmTLrVLy5whLdUq95HxyVKmmL+0qlZSvDyNd3tyRk716xwrP2JRBATqCNCbNGmiRuC1xfOwmIU2/we++uorNZfk4YcfNnoc7HP/zjvvFHr9iZxN8QBfmT+0lTwwc6v8dylOXvhxn3wzqLl4ezlNkg8RERERuamtp6Jl7dEIFbi/1auu+tumeilxNU4V1MOoUaPUyRQsRmDo7FnzWxcQUd5UKRUgs4e0kMe/2SHrj0XKpGVH5N2+9XPsYU9ERERE5CgyMnUyefkRdX7QXaFSo0zO9aFcBYfbiChXzaqUkGn9mwji+O93nJNvt2Rtc0NERERE5IgW77ogx67GS3ARH3np7priyhjUE1Ge3NuwvLx1X111/r2VR+WvQ9bvoUlEREREZGtxyWny6d/H1XkE9CUCrVvZ3tkwqCeiPHuqfTUZ3CZUsIXoy4v3y77zN+xdJSIiIiIiIzPWn5JriakSVjpQBrUJFVfHoJ6I8gzz6Cf0rid31ykjKemZ8vSC3XL+WpK9q0VEREREpJy7lijztmatrTa+V13xcYMFnl3/FRJRgcLK958/3lQaVAxSPaBD5++UmKRUe1eLiIiIiEimrDwmqRmZ0qFmiHSpXUbcAYN6IrIa9qqfO6SlVAj2V3vYP/P9HklJz7B3tYiIiIjIjW0/fU1WHb4q2Hp+fK96brNbE4N6IsqXMkH+Mm9YKynm5y07w6/LG0sOig6T7YmIiIiI7LCF3f9WZG1h90TrKlK7nOtuYZcdg3oiyjccLL8a2Fy8PT3kj/2XZeqaE/auEhERERG5oV/3XJTDl+OkmL+3vNKtlrgTBvVEdEfa1wyR9x9sqM5/sf6U/Lzrgr2rRERERERuJCElXT5anbWF3Ytda0qpon7iThjUE9Ede7RFZXmxaw11ftzSQ7L5ZJS9q0REREREbuKrjackOiFFqpYKkCFtq4q7YVBPRAXile615IGmFSU9UycjF+6VY1fj7F0lIiIiInJxF64nyezN4er82Pvqiq+3+4W47veKicgmsLroBw81lNbVSkp8Sro8OW+XRMQl27taREREROTCPlh1TFLTM6VNWCm5p15ZcUcM6omowPh5e8k3g1pIWOlAuRybLE/O3yWJKen2rhYRERERuaDdZ6/LioNXBDvXvd3bfbawy45BPREVqOAAH5k/tJWUCvRVK5C+8OM+Sc/ItHe1iIiIiMiFZGbq5N3lWVvY9W9RWepVCBJ3xaCeiApclVIBMmdIC/Hz9pT1xyLlnWWHuYc9ERERERWYpfsuycGLsVLUz1tevae2uDMG9URkE02rlJDpjzVR6VALd5yXObcWMCEiIiIiuhNJqdjC7pg6/3yXGlK6mHttYZcdg3oispmeDcrLW/fVVeffW3lUVh66Yu8qEREREZGTm7XpjETEpUilEkVkWDv328IuOwb1RGRTT7WvJkPahKrzryzeL3vO3bB3lYiIiIjISV2OuSnf/HNanR93X13x9/ESd8egnohsCquQTuhTX7rVLSMp6Zky/Lvdcu5aor2rRURERERO6KNVxyQ5LVNaVS0p9zYoZ+/qOAQG9URkc16eHvL5402lYcVguZ6YKsPm7ZKYpFR7V4uIiIiInMje8zfk9/2X3X4Lu+y8xQqjR4/OU7mpU6da87BE5AYCfL3l2yEt5IGZ2+RMdKI8890e+f7pVmpveyIiIiIiS7CT0uRbW9g91KySNKwUbO8qOWdQv2/fvlzLsLeEiMwpE+Qv84a1lIdmbpOdZ6/L678clGn9m4inJ48bRERERGTenwcuy77zMRLg6yWv93DvLezuKKjfsGGDNcWJiHKoVbaYzBrUXIbM3akOzlVKBshrPDATERERkRk3UzPkw7+ytrAb2bm6lA3yt3eVXG9OfXp6uiQkJBTEQxGRG2hXI0SmPNhQnf9ywylZvOu8vatERERERA5q9uYzcjk2WSoWLyJPdwizd3WcO6hftmyZzJ8/3+i69957T4oWLSrFixeXe+65R27csO12VTNmzJCqVauKv7+/tG7dWnbu3Gm27OHDh+Whhx5S5TEtYNq0aTatGxHl3SMtKsuLd9dU58ct/U/+ORFl7yoRERERkYOJiEuWrzZmbWH35r11uIXdnQb1WAAvMfH2VlTbtm2TCRMmyNtvvy0///yzXLhwQSZPniy2snjxYrVY38SJE2Xv3r3SuHFj6dGjh0RGRposn5SUJGFhYfLBBx9IuXLc7oDI0bzSraY82LSiZGTqZOSivXLsapy9q0REREREDuSjVcflZlqGNKtSXPo0Km/v6jh/UI+R77Zt2+ovL1myRLp37y5vvfWWPPjgg/Lpp5+q0XxbQafC8OHDZdiwYVKvXj2ZNWuWBAQEyNy5c02Wb9mypXz88cfy2GOPiZ+fn83qRUT5gwyaDx5qJHeFlZSElHS11R16Y4mIiIiIDl6MkV/3XlTnJ/Spz0XZC2KhvPj4eClVqpT+8pYtW+SRRx7RX65fv75cvnxZbCE1NVX27NkjY8eO1V/n6ekp3bp1k+3btxfY86SkpKiTJi7u9shhWlpagT0PuSetDbEt3YZD85ePNZZHv9mptrobOnen/PB0SynqZ9XhiW5hGyNbYvuiwsK2RrbGNuYcW9i9u+ywOt+3cXmpXy7QaT6vtAJoX9bc16pfzRUrVpSjR49KlSpV1MJ4Bw4ckM8++0x/+7Vr19TIuS1ER0dLRkaGlC1b1uh6XD52LGslxIIwZcoUmTRpksnb1qxZU2DPQ+6NbSmngZVFpsZ6ydGr8TLgy7XydJ1M8WJnbL6xjZEtsX1RYWFbI1tjG3Nc+655yO5zXuLjqZNmXhdk5coL4k7tKykpyTZBPUblX375ZRk3bpysXLlSzVO/66679Lfv3r1batd27q2pkAmAefuGI/WVK1dW5zHVwMfHx461I2eHHjd8udmWTGvUKlYGzt0lR2JEdmVUkUl96jLNykpsY2RLbF9UWNjWyNbYxhxbSlqGfPz5VhFJluc6VZcnutYQd2tfcQYZ4wUa1GNRvEuXLsmLL76oAvqFCxeKl9ft1Qd//PFH6dOnj9hCSEiIeq6IiAij63G5IBfBw9x7c/Pv8YHwS08FgW3JtBbVQmT6Y03luYV75MddF6Va6aLyTMfq9q6WU2IbI1ti+6LCwrZGtsY25phmbz0nF2OSpVyQv4zoUlN8fLzdrn35WHE/q96dIkWKyHfffWf29g0bNoit+Pr6SvPmzWXdunXSr18/dV1mZqa6PGrUKJs9LxEVrh71y8n4XvVk8vIj8v7KY1KxeID04kqnRERERG4hMj5ZZqw/pc6/eW9tCfB1zoC+MHnfyRz3s2fPqtRY7ANvuICerSAtfsiQIdKiRQtp1aqV2nceW+xhNXwYPHiwmvePefHa4npHjhzRn0eWwf79+6Vo0aJSo4ZzpXAQuZMn21WVC9eTZP62s/LKz/ulXLCfNA8tae9qEREREZGNfbr6hCSmZkjjSsHSt3FFe1fH9ba007a169ixo1qgrnXr1iq4LlOmjHTt2rVAF6wzpX///vLJJ5+oaQBNmjRRAfqqVav0i+edP39erly5oi+PlfibNm2qTrge98X5p59+2qb1JKI7g87Ct3vXk251y0hqeqYM/26PnI1OtHe1iIiIiMiGDl+OlZ/3ZC2IN6FPPfH05NpKBT5Sf/XqVenUqZOULl1a7Rlfp04dtdUARsNnz56tgv3//vtPBfm2glR7c+n2GzduNLqMDALUj4icj5enh3z+eFPp//UOOXQpVobN3yW/jWgrQUV8ZGf4dZWaVaaYv7SqVlKVJSIiIiJn38LuiCB869O4ArM0bRXUY/u60NBQ2bp1q/j7++uv79mzp4wYMULat2+vymjp70REdwJzqL4d2kIemLFNwqMT5eFZ2yQxJV2uxqXoy5QP9peJfepJzwacd09ERETkrFYfjpB/w6+Ln7envNnTuXdUc+j0eyzL/+abbxoF9IaL6L3++uuyevXqgqwfEbk5jMbPG9ZS/H085XRUolFAD1djk2XEwr2y6r/bU2+IiIiIyHmkpGfIlL+OqvPDO4RJpRIB9q6S6wb1Z86ckWbNmpm9HQvYoQwRUUGqXrqo2ZVPtQk2k5YdkYxMTrchIiIicjYLtp2Vc9eSpHQxPxnRmdsZ2zSoj4+Pl6CgILO3FytWTBISEqyuBBGRJZhDfz0x1eztCOWvxCarckRERETkPKITUuSLdVlb2L3eo7YE+nELO2tZ/Y4hsDeVfg9xcXFcmI6IChwWxSvIckRERETkGD5bc0LiU9KlfoUgebhZJXtXx/WDegTstWrVsng7tqIiIiroefUFWY6IiIiI7O/Y1Tj5ced5dX5Cb25hVyhB/YYNG2xXEyIiM7BtHVa5x6J45nKBMAcL5YiIiIjI8WFA+H/LjwqWRLq3QTlpHVbK3lVyj6Aee9QTERU27EOPbeuwyj36b00F9vE302TTiUjpWqesHWpIRERERNZYfyxStpyKFl8vTxl7b117V8d9Fsrz9PQULy8viydvby5sQEQFD/vQfzWwmZQLNk6xLxvkJzXKFJXk9Ex5asFu+Wrjaa7tQUREROTAUtMz5b0VWVvYPdm+mlQpxS3s7oRVEfjSpUvN3rZ9+3b5/PPPJTMz844qRERkKbDvXq+cWuUei+JhDj1S7rGV3aRlh2XRv+flw1XH1PysDx9qJP4+XvauMhERERFl8/2Oc3ImOlFCivrK8124hV2hBvV9+/bNcd3x48dlzJgxsmzZMhkwYIC8++67d1wpIiJLqfhtqpfKcd17DzSUOuWDZNKfh+WP/ZclPDpRvh7UXMoHF7FbXYmIiIjI2I3EVJm+9oQ6/+o9taWYv4+9q+Re6feGLl++LMOHD5eGDRtKenq67N+/XxYsWCChoaEFW0MiojwadFeofP9UaykR4CMHL8bK/V9ulb3nb9i7WkRERER0y7S1JyQuOV3qlCsmj7aobO/quGdQHxsbK2+++abUqFFDDh8+LOvWrVOj9A0aNLBNDYmIrIBR/D9HtVf/KKLiU+Sxr3fIkj0X7V0tIiIiIrd3MiJeFv57ews7ZFtSIQf1H330kYSFhcny5cvlxx9/lG3btkmHDh0KoBpERAWncskA+XVEW+lRv6ykZmTKa78ckP8tPyLpGVzzg4iIiMhe3lt5VK2F1L1eWWlbI8Te1XHPOfWYO1+kSBE1So9Ue5xM+e233wqqfkRE+RLo5y1fDWgu09edVKc5W8LleES8fPl4MwkO4NwtIiIiosK04XikbDweJT5eHjLuPm5hZ7egfvDgweLhwRQJInIOnp4e8kr3WlK7XDF59ecDsvlktPSbuVVmD26htsEjIiIiIttLy7i9hd2QNlWlWkigvavkvkH9/PnzbVcTIiIbua9heQktFSDPfLdHrYr/wIyt8vnjTaVLnTIqBSz7Fnmc30VERERUcH7ceV5ORSaoxYxfuLumvavj3kE9EZGzql8hWP4Y1U5GLtwrO89elycX7JJ+TSrK9jPX5Gpssr5c+WB/mdinnvRsUN6u9SUiIiJyBbFJaTJ1TdYWdqPvqS3BRTgN0mG2tCMicjYhRf1k4dOt5fFWVUSnE1m675JRQA+4PGLhXln13xW71ZOIiIjIVWBto5ikNKlVtqg83pJb2NkCg3oiciu+3p4yuW99CfI3naiku/V30rIjKjWfiIiIiPLnTFSCfLf9rDo/vlc98fZi+GkLfFeJyO3sOntD4pLTzd6OUP5KbLKaa09ERERE+fP+yqOSnqmTrnXKSMdape1dHZfFoJ6I3A4WxSvIckRERERkbMvJaFl7NFK8PbmFna0xqCcit4NV7guyHBERERHdlp6RKZOXH1HnB94Vyq2EbYxBPRG5HWxbh1XuzW1ch+txO8oRERERkXUW774gxyPi1Ur3L3fjFna25nRB/YwZM6Rq1ari7+8vrVu3lp07d1os/8svv0idOnVU+YYNG8rKlSsLra5E5JiwDz22rYPsgb12Gbdzv3oiIiIi68Qlp8nUv7O2sHulW00pHuBr7yq5PKcK6hcvXiyjR4+WiRMnyt69e6Vx48bSo0cPiYyMNFl+27Zt8vjjj8tTTz0l+/btk379+qnTf//9V+h1JyLHgn3ovxrYTMoFG6fY4zKu5z71RERERNabsf6UXEtMleqlA2XAXaH2ro5bML2nk4OaOnWqDB8+XIYNG6Yuz5o1S1asWCFz586VMWPG5Cg/ffp06dmzp7z++uvq8uTJk2XNmjXy5ZdfqvtaIzk5WRITE8XHx8foei8vL5UFoEEZczw9PaVIkSL5KpuUlCQ6bKxtgoeHhwQEBOSr7M2bNyUzM9NsPQIDA/NVFu9XRkZGgZRFfVFvSElJkfT09AIpi/cX7zOkpqZKWlpagZRFe0C7MFUW5w3bkmFZ3Iby5vj5+Ym3t7fVZfEe4L0wx9fXV9+urSmLzwyvxRyUQ3lry6KNoa0VRFm8B3gvAN8JfDcMdagWJKtHtZaPVx+V73ZckmbVSsuSEW0FA/SWvp/WfO8L+xiRvY0BjxHOc4ywVNZRjhHm/h+64jEiv2Ud+RhhiqMeIyy1NR4jHPcY4Wy/I8y1MeAxwvpjxPlrSTJ3a7h+C7v01BRJdcPfEWlpaUavJT/HCEufXw46J5GSkqLz8vLSLV261Oj6wYMH6+6//36T96lcubLus88+M7puwoQJukaNGpl9nuTkZF1sbKz+dOHCBbRYs6d7771Xl5qaqj8FBASYLduxY0ejsiEhIWbLNm/e3KhsaGio2bJ169Y1KovL5sricQzL4nnMlUX9DMui/ubK4nUblsX7Yul9Myz74IMPWix748YNfdlBgwZZLHvp0iV92eeee85i2RMnTujLjh492mLZffv26cuOHz/eYtlt27bpy06ZMsVi2TVr1ujLTp8+3WLZ33//XV92zpw5Fsv+8MMP+rI4b6ksHksri+ewVBZ11Mqi7pbK4rVrZfGeWCqL91Qri/faUll8VlpZfIaWyqINaGXRNiyVDWxwt67jh+tVWbQ5S2XRZg3bsKWyPEZknXiMcI1jxK+//uq2xwi0La0sjxG2P0b06NHD4vvGY4RjHiOc6XdEYmKi7uuvv7ZYlscI648RRUuV14W+uVw3cPZ2Fb+58++Ir7/+WrWzOz1GICbNjdOM1EdHR6selrJlyxpdj8vHjh0zeZ+rV6+aLI/rzZkyZYpMmjQpz/VC6r/hPH1LvUDXrl0zKmuphzQ2NtaorKXevoSEBKOyuGwOHsewLJ7HHNTPsCzqbw5et2FZc1MiNIZlLX0esHr1an0P5cWLFy2WXbt2rQQHB6vz586ds1h2w4YN+vZx5swZi2U3b96sf7yTJ09aLLt161b96zfXNjU7duzQ98IdPnzYYtndu3frzx84cMBiWUw30XpUcd4SPJb2eRg+hymoo1b20KFDFsvitWtlc3vPcLtW9vz58xbL4rPSykZERFgsi89MK2uprWsuXE+UP5evlPRUy1vZoc3mdX0OHiOy8BjhGseI3Mq68jECbUsra2nEEHiMuPNjBH73WcJjhGMeI5ztd0RueIyw/hhxMy1DPEUn7QIj5K+//nLr3xGALPGCPkaY4oHIXpzA5cuXpWLFimqefJs2bfTXv/HGG7Jp0yb5999/c9wHqTULFixQ8+o1M2fOVEG7uX/0SKMwTBuKi4uTypUrqxT/3r17M/3eRVJi7Jl+v379eunatSvT7x0otRa3tf14s9zM9JJVL7aTsJAAp02by97GgMeI/JVlam3O7z0+Y/xIM2xf7nCMsLasIx8jTHHEY0R8fLz6MWyurfEY4ZjHCGf6HYH3AMFc+/btmX5fAMeIjEydPDZ7pxyPTJBB7WrKO33quvXviLS0NNmyZYta/w3tKz/HCMShoaGhqmMkKChILHGakfqQkBDVqLMH47hcrlw5k/fB9daUB3wZtS+kIXyZihcvbvZLr0GZvLKmrNYjVNBlc3s9LFuwZfEFNdeWcNnwgJnb41pT1vCgXZBlDf/JFFRZMPUdLIiy2j98U6qXLyH/XYqT8zeSpU6F4hbLFtb3Pj/HCEttLHtZZ/0euXNZex8jrPl/6GrHiDsp60jHiIIua6v2XqxYMavami3q4Ixl7X2McLbfEQii8tLGNDxGmC+7eNd5OXkjXYKLFZVXe9TRv6eO8t0o7LL4PYb2hTLaydrH1YJ8l1r9Hl+M5s2by7p16/TXoScHlw1H7g3hesPygF5fc+WJyH1VCymq/oZHW7EoCREREZGbS0hJl49XZ21h99LdNaVkILewK2xOM1IP2M5uyJAh0qJFC2nVqpVMmzZNpZVoq+EPHjxYpehjXjy89NJL0qlTJ/n000+lV69e8tNPP6m5Pt98842dXwkROZqwkKw0rTNRDOqJiIiI8mrmhlMSnZAiVUsFyOA2Ve1dHbfkVEF9//79JSoqSiZMmKAWPGjSpImsWrVKv0gJFsYwTFNo27at/PDDDzJ+/HgZN26c1KxZU37//Xdp0KCBHV8FETmisNJZQT1H6omIiIjy5sL1JJmzJWsLu7d61RNfb6dJBHcpThXUw6hRo9TJlI0bN+a47pFHHlEnIiJLwm6l35+JNr+iKxERERHd9sFfxyQ1PVPaVi8l3eqWsXd13Ba7UoiIMKf+1kh9dEKqxN40vzopEREREYnsOntdVhy6Ip4eIm/3rqdfFZ4KH4N6IiIRKernLWWKZa2WyxR8IiIiIvMyM3Xy7rIj6nz/llWkbnnLW66RbTGoJyLKNq/+TBRT8ImIiIjM+W3fJTl0KVYNiozuXsve1XF7DOqJiG4JK81t7YiIiIgsSVRb2B1T50d1rSGlb2U6kv0wqCciuoXb2hERERFZ9vWm0xIRlyJVSgbIsHbcws4RMKgnIsqefs+ReiIiIqIcLsXclK//OaPOj723jvh5e9m7SsSgnojotmq3trULj05QC8AQERER0W0frTomKemZ0qpaSenZoJy9q0O3MKgnIrqlcoki4u3pIclpmXIlLtne1SEiIiJyGHvO3ZA/9l8W7Fw3gVvYORQG9UREt3h7eUqVUgHqfDjn1RMREREpyGCcvDxrC7uHm1WSBhWD7V0lMsCgnojIQNitFPwz0dzWjoiIiAiWHbws+y/ESICvl7zeo7a9q0PZMKgnIjJQXb9XPUfqiYiIiG6mZsgHf2VtYfd8lxpSJsjf3lWibBjUExEZqKZta8cV8ImIiIjkm3/OyJXYZKlYvIg81b6avatDJjCoJyIyEFb6Vvp9FNPviYiIyL1djU2WWZtOq/Nj7q0j/j7cws4RMagnIjIxUo99WJPTMuxdHSIiIiK7+Wj1MbmZliHNQ0tI70bl7V0dMoNBPRGRgZCivlLM31t0OpFz15LsXR0iIiIiuzhwIUZ+23tJnecWdo6NQT0RkQH8wwq7NVofzhXwiYiIyA3pdLe3sHuwaUVpXLm4vatEFjCoJyIyM6/+NFfAJyIiIje04tAV2X3uhhTx8ZLXe3ILO0fHoJ6IKJvbI/UM6omIiMi9YE2hKSuztrB7tlOYlA8uYu8qUS4Y1BMRZVNNv1c90++JiIjIvXy7JVwtGFw+2F+e7Vjd3tWhPGBQT0SUTVjIrW3tOFJPREREbiQyLllmbjilzr/Zs44U8eUWds6AQT0RUTZVQwLU35ikNLmRmGrv6hAREREVik/+Pi6JqRnSpHJxub9xBXtXh/KIQT0RUTYBvt5SIdhfnT/DFfCJiIjIDfx3KVZ+2XNRnX+7dz3x9OQWds6CQT0RkYUV8M9wBXwiIiJyky3sdDpRI/TNQ0vYu0pkBQb1REQmVLu1Aj7n1RMREZGrW334qvwbfl38vD3lzXvr2Ls6ZCUG9UREJoTdWgE/nCP1RERE5MJS0jPk/Vtb2D3TMUwqFucWds7GaYL669evy4ABAyQoKEiKFy8uTz31lCQkWJ7r+s0330jnzp3VfTw8PCQmJqbQ6ktErjJSzzn1RERE5Lrmbz0r568nSZlifvJcJ25h54ycJqhHQH/48GFZs2aNLF++XP755x955plnLN4nKSlJevbsKePGjSu0ehKRa6h+a0792WtJkpGps3d1iIiIiApcdEKKfLE+awu7N3rWkUA/b3tXifLBKT61o0ePyqpVq2TXrl3SokULdd0XX3wh9913n3zyySdSoYLp7RZefvll9Xfjxo15fq6UlBR10sTFxenPp6Wl3cGrILrdhtiWHF/pQG/x9faU1PRMORcdJ5VLZG1z5+jYxsiW2L6osLCtka2xjWX5ZPUxSUhJlwYVgqRPgzJu/344Uvuy5r4eOix16ODmzp0rr776qty4cUN/XXp6uvj7+8svv/wiDzzwgMX7I6jv0qWLuj9S9y155513ZNKkSTmu/+GHHyQgwDl+1BNRwZiy30uu3vSQ5+pkSN0SDn+oJCIiIsqzS4kiHx/0Ep14yIv106V6kL1rRNmzzp944gmJjY1V08mdfqT+6tWrUqZMGaPrvL29pWTJkuq2gjR27FgZPXq00Uh95cqV1fnu3buLj49PgT4fuRf0uGEKCduSc1gRu1+uHomUkLB6cl+bUHEGbGNkS2xfVFjY1sjW3L2NYVx36Pw9opPrcm/9svLCY43tXSWXklYA7cswYzw3dg3qx4wZIx9++GGuqfeFyc/PT51MwQfijl96KnhsS86hepliIkci5dz1ZKf7vNjGyJbYvqiwsK2RrblrG1t7JEK2nbkuvl6eMq5XPbd8Dxy9fVlzP7sG9UipHzp0qMUyYWFhUq5cOYmMjDS6Hun3WBEftxER2UIYV8AnIiIiF4P1gt5bmTVw+lSHalK5JKcYOzu7BvWlS5dWp9y0adNGbUe3Z88ead68ubpu/fr1kpmZKa1bty6EmhKRO+Je9URERORqvtt+VsKjEyWkqJ+M7Mwt7FyBU2xpV7duXbU13fDhw2Xnzp2ydetWGTVqlDz22GP6le8vXbokderUUbdrMN9+//79cupU1jYNhw4dUpcxwk9ElJuwkKxt7S7HJktSarq9q0NERER0R64npsrn606q86/dU0uK+TPt3hU4RVAPixYtUkH73Xffrbaya9++vXzzzTdGixEcP35crRKomTVrljRt2lR1BkDHjh3V5T///NMur4GInEuJQF8pEZD1z+5s9O1jCxEREZEzmrb2hMQlp0vd8kHySIusxcDJ+TnF6veAle6xrZw5VatWVas4Zt+eDiciovyqFhIoN87HqHn19SpwrxciIiJyTicj4mXRv+fV+bd71xUvTw97V4ncbaSeiMgewkpnpeBzXj0RERE5s/+tOCoZmTq5p15ZaVs9xN7VoQLEoJ6IKJeRejgTzaCeiIiInNOG45Gy6USU+Hh5yLj76tq7OlTAGNQTEVlQ/dYK+GeiuK0dEREROZ+0jEz53/Ij6vywdtWk6q0BC3IdDOqJiCyodmsFfIzUZ1+3g4iIiMjR/fDveTkdlSglA31lVNca9q4O2QCDeiIiC0JLBYiHh0h8crpEJ6TauzpEREREeRaTlCqfrT2hzo/uXkuCuIWdS2JQT0Rkgb+Pl1QqUUSdD+e8eiIiInIi09edlJikNKldtpg81pJb2Lkqp9nSztFlZGRIWlqavatBDg5txNvbW5KTk1WbcXY+Pj7i5eUl7pCCf+H6TTWvvlW1kvauDhEREVGuTkclyPfbz6nz43vXFW8vjue6Kgb1dwhzbK9evSoxMTH2rgo5SXspV66cXLhwQTyQ0+0Cihcvrl6Tq7weU8JCAuWfE1EcqSciIiKn8f6Ko5KeqZO765SRDjVL27s6ZEMM6u+QFtCXKVNGAgICXDqwoTuXmZkpCQkJUrRoUfH09HT6DoqkpCSJjIxUl8uXLy+uKuzWCvhYZIaIiIjI0W0+GSXrjkWKt6eHjOvFLexcHYP6O4D0aS2gL1WqlL2rQ04S1Kempoq/v7/TB/VQpEjWXHME9vgeuGoqfph+BXxua0dERESOLV1tYXdUnR/UJlSql876HUOuy/mjCjvS5tBjhJ7IXWnt35XXlNBG6s9fS1L/KImIiIgc1U+7LsjxiHgpHuAjL91d097VoULAoL4AMOWe3Jk7tP9yQf7i7+Op5qVduHHT3tUhIiIiMin2ZppMXZO1hd0r3WpJ8QBfe1eJCgGDeiKiXHh6eqgV8CGcKfhERETkoGZsOCXXE1OleulAeaJ1FXtXhwoJg3pyKu+88440adKk0J936NCh0q9fvzt6jPnz50vJkiUL5PW9/fbb8swzz4it3XXXXfLrr7/a/HmcZQV8OMPF8oiIiMgBnY1OlHlbw9X58b3riQ+3sHMb/KTdUFRUlIwYMUKqVKkifn5+ajuyHj16yNatW8XR0rp///13e1fDIXdcmD59urz11ltG18+YMUOqVq2qFuFr3bq17Ny5M8+P+dNPP6n3O3vHxfjx42XMmDFqgT93xxXwiYiIyJG9v/KopGXopFOt0tKldhl7V4cKEYN6N/TQQw/Jvn37ZMGCBXLixAn5888/pXPnznLt2jVxRVht3pXMmTNH2rZtK6GhofrrFi9eLKNHj5aJEyfK3r17pXHjxqqjRttuzpKzZ8/Ka6+9Jh06dMhx27333ivx8fHy119/iburdmuknun3RERE5Gi2nY6Wv49EiJenh4znFnZuh0G9DSQmmj8lJ+e97M1s63GZK2cNbMG3efNm+fDDD6VLly4qMGzVqpWMHTtW7r//fn05jNoieHzggQfU6uY1a9ZUwb+hTZs2qftitB97lGNENz09Xd22fPlyKV68uNr2D/bv368eE2U0Tz/9tAwcONBkPTHiDHh+3E+7rPn+++/VdcHBwfLYY4+pwFODDopRo0bJyy+/LCEhISq4hf/++08FqdgjvmzZsjJo0CCJjo7W32/JkiXSsGFDtU0btijs1q2bJGZ7gz/55BP1WnH7888/b7Ti+40bN2Tw4MFSokQJ9Z7huU6ePGnx8/jggw9UXYoVKyZPPfWUJGdvIGZG1fv06WN03dSpU2X48OEybNgwqVevnsyaNUvVYe7cuRYfC5/PgAEDZNKkSRIWFpbjdmxRd99996nndHdht7aDYfo9EREROZKMTJ1MvrWF3YDWVaRm2WL2rhIVMgb1NlC0qPnTQw8Zly1TxnzZe+81Lou41lQ56+pWVJ2Q1p6SkmKxLAK9Rx99VA4ePKgCOwR/169fV7ddunRJXdeyZUs5cOCAfPXVV/Ltt9/K//73P3U7Rn0RaCMjQOsAQIC9ceNG/ePjOgTgpuzatUv9nTdvnly5ckV/GU6fPq3qj44DnPA4CI4NIQvB19dXTSlAgIvOjK5du0rTpk1l9+7dsmrVKomIiFCvD/Acjz/+uDz55JNy9OhRVc8HH3xQdDqd/jE3bNignht/8fiYI4+T4bx7PDY6P7Zv367ui/fI3FZvP//8s5pD//7776v7obNg5syZFj8TvP9HjhyRFi1aGGUi7NmzR3VCaDw9PdVl1MOSd999V+0vjw4Fc9Bxg44gd6eN1EfGp0hCSlbnFREREZG9/bL7ghy9EidB/t7ycrda9q4O2QGDejfj7e2tAlEEpRhJb9eunYwbN04F7tkhSEWgW6NGDRV4JiQk6OdpI/isXLmyfPnll1KnTh01FxudAJ9++qmaf40RdCz4pgXx+PvKK6+oIB+Pg06BU6dOSadOnUzWs3Tp0uov6og5/9plwOPjNTRo0EB1HmDEfd26dUb3R2bBRx99JLVr11Yn1BMBPV4H6ovzGMVGgI4pCAjqkWWAQB4ZABixHzlypOoA0WAEXnu9vXv3ll69eumfFyPyCOaR3YA6If190aJF6nWaWxdg2rRpKpjGCXVEhwhG2S05f/686iyoUKGC/jpkG2DEHSP+hnAZ8+/N2bJli+qImT17tsXnxHNduHDB7efVBxfxkZCiWdvChHO0noiIiBxAfHKafPL3cXX+pW61pGQgt7BzRwzqbSAhwfwp+0LimPJsrmz2acxnz5oul5859ZcvX1ZBaM+ePVXA3axZM6NRZ2jUqJH+fGBgoAQFBennaGM0u02bNkZ7lKODAAH7xYsX1WUE7HhsBKEY6UXAXLduXRVMYnQdwSKCb2sh6Ea6ugYj3Nnnjjdv3tzoMrIJEMBrmQo4ITgHjL4jCL/77rtVMP/II4+oQBfp9Ibq16+v0tFNPS/eD3SYYIE6DVL0EazjNlNwvWF5wHtqyc1bczKwGN6dQBYFOkPwOpFBYQmmIyCgzy2zwx2E3drW7gzn1RMREZEDmLnxtEQnpKqMwkF33V5vidyLt70r4IoCA+1fNjcICrt3765O2B4N89uxyBpG5zU+Pj5G90EAb81oLVLrMRqOgBqPhSAa1yHQR8BsbpQ+N3mpFzohDKGzAfPQsZZAdgjOEayvWbNGtm3bJn///bd88cUXanX5f//9V6pVq5bn57U1LQDH+6dlL+A61B/TCQzhMrIcTEFHBhbIM5ybr70WdE4cP35cqlevrk/5x/uJ4N7d4R/mzrPXOa+eiIiI7O7C9ST5dnPWFnZv3VdXfL05Xuuu+MmTgrTv7IvCWYIRd23euAbz1zGCXqlSJaN59Z999pk+gNeCepzMzafXIIjWFtq7U8hEOHz4sBrlx3QCw5PWAYAgHdkGmEaAaQKYk7906dI8vx9I30cngAa7CSA4NpdSj/sYlocdO3ZYfB4E2siYwLx6DeqJzATDKQgI0HHZ3Mg/OlgOHTqkFjDUTlgoEYsn4jymVmiwwCCmK9Dtbe3ORDOoJyIiIvua8tdRSc3IlPY1QuTuutzCzp0xqHczCDSxYNzChQvVPPrw8HD55Zdf1Pzzvn375vlxMN8c86xfeOEFOXbsmPzxxx9qpB/bqmGRNm0OOlL4MbdcC+A7duyotlzDPPbcRuoRgCMwxbzw7Knw1sJK9RhxxhoBWHQPI9WrV69Wq8Wj4wDBtbZgHeat//bbbxIVFaUC77zANAK8f1iBHtMLkJ2Alf0rVqxo9n196aWXVCYDFgPE+4H3Dx0PlmgL4OE5DOF9Ryo91kpAWv+IESNUJw1enwYr82OXAy1TA2sSGJ6wfgE6ZXAeHQUaTJ2455578vQ+uMsK+NzWjoiIiOxpZ/h1WXnoqnh6iIzvXddoSiy5Hwb1bgZzyTGPG6PnCLARwCH9HsEoFoHLKwSrK1euVAvnYT76c889pxZ8Gz9+vFE5BO4ImrWgvmTJkmrkGmnhmG9uCRbdQ0o8Ro3vdKQY8/eRSYC6IEDF3HlseYdAFoEyRr//+ecftVp9rVq11OvA82NburxCcI4RcyyihxFyZDHgPcqetq/p37+/eu/feOMNdb9z586pYDw3mCqBLeYMU//xWNhub8KECWqBQoy2Y4V/w8Xz0FmBBQGtgYX+MCXBsHPAnen3qo9KNMpSISIiIiosmZk6eXd51kDQY62qSJ1yQfauEtmZh85JfplilBWjwsuWLVNBGBZ7mz59utHq5NnLY+QT86MRzGD+MVZonzx5slqZPa/i4uJU+R9++EEefvhhowANe4pjpBtzru904TJyDwjE0abQiaBlNFgLX1l0zGA3AWQe2NKbb76psiS++eYbs2Xc6XuQmp4pdSesUvvB/jvubikb5HivF1soojMJHVTmOpSI8ovtiwoL2xrZmjO3MWxh9/qSg1LMz1s2vN5ZQor62btKZIP2pcWhsbGxKnZwiZF67JGO1GSM3GJvcoyqPvPMM2bLY3V3nDB6iTnBWNkdI5eW9uMmcgZIr0KQjTn8toY97NERRlmwAE3lElkLBp6OYgo+ERERFa7ElHT5eHXWFnajutZgQE/Os/o95ggjIMdc6BYtWqjrsDo5ej4QtBvu2a1BWvmvBvvHYYGx9957T81zRjCEFb6JnBVS7HGytVdffdXmz+GM8+rPXkuS8OhEaVvd8naARERERAVp1qbTEhmfIlVKBsjQdlXtXR1yEE4R2WKVdcx91gJ6wGJhSF/GAmcPPPBAnh5HS12wFNBjL27D/biR9mCYRmEIl5EKjZTqwt7ajJyTNttFazeuAK8DrwffB2yt5+pCS2aN1J+KiM9xTHAEWp0csW7k/Ni+qLCwrZGtOWMbuxxzU77554w6/2aPmuKpy5S0NNf4Pelq0gqgfVlzX6cI6rH6OdKADSEwx6JruC0voqOjVRqxpZR9mDJlitrSzBSk/mevAxZ8wx7oqampeaoHEWCrP1eBtn/z5k01JaYwpgTYW/xVrC7rJX/vD5fAmDNSPUinVp51NNmPV0QFie2LCgvbGtmaM7WxBSc8JSXdU2oE6SQtfI+sPGvvGpEt21dSUpJzBPVjxoyRDz/8MNfU+zuF0fZevXqpVdffeecdi2Wx5Re2BzO8r7Znd/fu3XMslIdt3bBYn6svEEYFAyPaCOixdZyrbD2C70GRIkXUbgqu/j1YfThC1h84gr5TuZTkKV8eESkX5Cfj76sjPerf3mnAntCri38g2Y9XRAWB7YsKC9sa2ZqztbG952Nk7/adgp+PnwxoI/UrcMV7V29fcQYZ4w4d1GO+7tChQy2WCQsLU6PhkZGRRtdjRBAr3OM2SxBA9ezZUwVRS5cuzfVN9fPzUydTcF/D+2N7NARmmAaQ35XMyb1oKfdau3EFeB14Pdm/H65m1X9X5IWfDkj27UIi4lLU9V8NbCY9G5QXR+HqnwfZF9sXFRa2NbI1Z2hj2MLu/VUn1PlHm1eWJqGl7F0lKoT2Zc397BrUY5s5nHKDPb9jYmJkz549aj9vWL9+vQqQsLWXpd6NHj16qCD9zz//dPlRRCKyDWxhN2nZkRwBPeA65Fzg9u71yomXI+biExERkdP688BlOXAhRgJ9veTVHrXsXR1yQE4xVFi3bl012j58+HDZuXOnbN26VUaNGiWPPfaYfuX7S5cuSZ06ddTtWkB/zz33SGJionz77bfqMubf44QRdiKivNoZfl2uxCabvR2BPW5HOSIiIqKCkpSaLh/8dUydH9mlhpQpxkFKctKF8mDRokUqkL/77rtVuu9DDz0kn3/+udG8hePHj+sXFNi7d69aGR9q1Khh9Fjh4eFStSq3gCCivImMNx/QG7oae9PmdSEiIiL3gdXur8YlS8XiReSp9tXsXR1yUE4xUg9Y6f6HH35Qc+SxNd3cuXPVAnUaBOlYhKxz587qMv7isqkTA3rr4L18+eWXbfocWMCwMPZdtzVkhSBDxNaQpfLpp5/a/HkoS157xaf8dUx+2nleUtO5vUxhTo3Yfvqa/LH/kvqLy0RERK7gSuxN+XpT1hZ2Y++rI/4+rr91MLl4UE8FB4sTYmGz5557Lsdtzz//vLrNcAHD3377TW0HSLmvAv/222/LxIkTja7/5Zdf1NQQrOnQuHFj+fvvvy0+Dt5vrJSJ9SaCgoLUmhKrV682KjN+/Hh57733VAcX2V6raiWlfLC/mjtvDlajjYxPkTG/HZLOH2+Q77afleQ0TvWx9eKF7T9cL4/P3iEv/bRf/cVlXE9EROTsndVv/HJQbqZlSIvQEtKroeMsxkuOh0G9m8I2fT/99JPaX9wwKEU2RJUqVXJkSWD3ALJsyZIlKghv166d/rpt27bJ448/Lk899ZTs27dP+vbtKwMHDpT//vvP7ONgv3cE9StXrlSLQ3bp0kX69Omj7q9p0KCBVK9eXRYuXGjz10WiFr+b2KeeOp89sPe4dZrWv4mM71VXShfzk8uxyTLhj8PS4aMNMmfzGTUfjgoWAvcRC/fmWOvgamyyup6BPREROXtn9eZT0er6bvXKusxWyGQbDOptIDU11ewJW/HltSzWCchL2fxo1qyZCuwxKqzBeQT0TZs2NZt+f+zYMQkICFDBv+bnn39W+5QfOYL9u0XtVPD000/rR5q7du0qBw4cMHrMDz74QMqWLas6CxDwokPBkhs3bsiAAQPUY+K5atasKfPmzVO3nT17Vh3oUH8EwKgfRsS3b99u9Bi//vqr1K9fX+2GgCkYhunrX375pQqUNb///rt6zFmzZumv69atmxohNwedJAi+DU2fPl0t8vj666+rBR/fffddVbcZM2aYfZxp06bJG2+8IS1btlSv8/3331d/ly1bZlQOz4XnpMKB7eqwbV25YONUfFzG9X2bVJSnO4TJ5je6yLt960uFYH+Jik+R/604Ku0/3CAzNpyS+GTj7zTZZjcCwO1MxSciImfvrIYP/zrGzmpyjYXynMmUKVPM3obg7IknntBf/uSTT3IE75rQ0FCjNHgEiNpCgIayp3vn1ZNPPqkCYwTLgHUKhg0bJhs3bjR7H6SRo84jR46U9u3bq0ULkcb/4YcfSr16WSOZjzzyiAq8//rrLwkODpavv/5aLXB44sQJNeqPTgDMoUdgi8f4/vvv1aKHYWFhZp8Xae3oNMBjhoSEyKlTp4yyDOCtt95SdcN7jPMYIUc5b29vNeL96KOPquft37+/GkHHayhVqpR6jzt16iQvvviiREVFqY6DTZs2qefBe4HXh88InQRjxowxW8ctW7bIoEGDjK7DfUaPHm10HTo5Vq1aJXmFrRuxlgTeO0OtWrVSKfgpKSmqo4IKJ7DHtnVY5R6L52GuPVLzDbexw3y3wW2qymMtq8jSfRdlxobTcv56kny8+rh8vem0DGtXTYa1qyrFA3zt+lrcZTeCNtXvfC9fdA5Y+syJiPKKxxOytrNaw61zyRIG9W4MaeBjx46Vc+fOqcvYKhAjv5aCekAwjNRw3N/X11eNKL/wwgv6wBbbCkZGRuoDTQTaGPlGevozzzyjRqIxOo8T/O9//5O1a9daHK0/f/68yiBo0aKFumxqscPXXntNevXqpc5PmjRJjcojqEdHxNSpU1XHAjoHoFatWqqT4OOPP1ZBPUbpETQjmH/44YfVe/Dqq6+qjhTAa0Jg37ZtW5P1Q3YC5rdrWyxqsIUiMhIModMA1+cV3r+EhATVKWEIz4VMDTwWOoCocOCfaV4CRV9vT+nfsoo81KySLDt4Wb5cf0pORyXK9HUn5dst4TKoTahaxTakKDtkbLUbgbly1vyoxsgIfkgZdiJgfQVMx0AnDxFRXvF4QuasPxZRqJ3V5HoY1NsAAmVzMLKdPRA1J/vcmZdeekkKEoJLBMHz589XuwLgPEan8wKj+giM8XoOHz6sryvS7BGAYgTcEEbVT58+rc4fPXo0xyJ9WAxuw4YNZp9vxIgRahtDbFWI1eX79euXI8Bu1KiR/nz58ln/HNG5gKAez4n57IYw9x0dDBkZGeLl5SUdO3ZUwTzS7BHwo/Pio48+UlMOEOyj8wKp/aZoWQNYDK8gYZoDOij++OMPKVOmjNFtyIYAU9kb5Di8vTzlgaaV5P7GFWXVf1fli/Un5djVePlq42mZtzVcBrQOlWc6hknZIO47W9C7EZgqZ82Pai0VMvvIiTZvH9Mu+EOciPKCxxMydCMxVf4Nvy47zlxTJ/wuKMhObXI/DOptAKPX9i5rTQr+qFGj1HlL87yzQ/CemJiogvorV67og2gE9DhvarS/ePHi+a7nvffeqzIKkCGwZs0aNeqOlfoxiq3x8fHRn9c6GZC6nldYO+Cbb76RzZs3q6wArAegBfoI6pGibw46MfCcmPtvqFy5chIREWF0HVL8cX1ukDWBtQmwej46GrK7fv26vnOGHB9Ggns1Ki/3Nign645FquD+4MVYNWr//Y5z0r9FZXm2U5hUKmG644hy7kZgblTD49ZaByiX3x/Vuc3bx3MwFZKI8oLHE8pvEJ/fTm1yPwzq3RwWcUMKNwLSHj165Ok+CCaRso556wjoMScfI+gYOcYCfEgHxzx2UynygAXj/v33Xxk8eLD+uh07duT6vAhehwwZok4dOnRQi88ZBvWW4DkxvcAQLiPbAKP0gKAdCwIiiEaAD/iLqQEoi3R8Sx0uWFMAI/yG+9QjA2HdunX6hQYBGQl33XWXxfr++OOPqsMFgb02pSA7rKBfqVKlPGdXkGPw9PSQ7vXKSre6ZeSfk9HyxbqTsvvcDRXY/7jzvDzYrKKM7FxDqoYE2ruqDgs/eu9rWF51iJiDkXfDH8d5WVzv9SUH1Q+t9AydnLuWyFRIIrpj6RmZsmD7WR5P3Mz1xFTZGY4A/rrZIL5mmaJyV1gpdWoeWkIemLlVdTLrrOisJtIwqHdzCGiRmq6dzwukzmPlfKwEj0XaMKqNaQQY6ceIMgJZpMcjdR1B8+XLl2XFihXywAMPqDnxmEaATgGcRwr8okWLVAq/pYXyJkyYIM2bN1fz5PGcy5cvV4F6XiEgR/r85MmT1UJ5WMAOK97PnDnTKH2/RIkSKuUdj68F9Xht6PQw3KrOFHSKYE0BwwAerxWdBVhpH8E5gvX9+/fLnDlzjKZrXLp0Sb777jt1Gc+PjgvM52/durV+/j06TbDwoAYZBYYdCORc0KY61SotHWuGqH/6GLnfdvqa/Lz7oizZc1Gtpv98l+pSo4zjbCfpKAs8XbyRJD/vvqDOF/XzkoSUDKPbkfGQPY01t8X1ID45XaatPWlVXb7+57RcS0yRZlVKqOwBbjnkGhylrbsqV39/Y5JSZdOJKFl3NFI2Ho+UuOS8bWvK1Gr3CeLR5rEFbvbOaGSN4ZtgGNh7mOmsJjLEoJ5UmnleIfBECjz2TMdoPE7YKx2r2Pfu3VulyeN2jOJjJX0t1Rxp7NqCcQiqMb8e27ZhcTzMlcec+dWrV1scCUfwi+3rENxipN6a7dyQQYBV99E5gMAeUwSwvZzh7gL4MY7HRQcEXo8W6OP9qV27tgQGWh45xcJ/6KjAgnla8I15/wjS0QEybtw4tTI/3i/D7fOQ7YCFADWYAoCtDzG9ACcNAn2sfwB437D4oDWr6JNjQrvDyAxOe85dVwvqbTgeJUv3XZLf91+S+xqUl+e71JB6FfL+PXXlBZ4w6vXyT/tVAN60SnH5cfhdsu98jPoxvPZopCw7cFn+uxSX7x/L+Bxqly0mUfHJsuJQ7gtabjwepU5QNshPmlYuIc1Ci0vTKiWkYcVgtRsCORdHaeuuyhXfX6xLdDoqQR2D1h+NlN3nrovhjpqmOh9NmbP5jJQu6qeOQ+wgdP4gvlbZotK6mvkg3tzWudm/H+Wc/PtBhcNDhyMRmRUXF6cCNARmWBXdcN42Aqvw8HCpVq1agS+QRs4J2/mhA8HcYomY4482hY6C7IsmWuOrr76SpUuXyt9//y32xu9BwTt0MVaN3P995PZ6DN3qlpUXutaQxpUtr02BXRrQsXbfffcZHa/uhLm56NpPTlsv8GQ4qrf5RLQs2XtRivp5y8oXO0iVUrfXILhwPUk6fbxB/ZheO7qjUZbD9tPR8vjsf3N9LnQS4Ac1nrP9h+vNpkJC8SI+ap2EAxdj5OiVeHUfQ96eHqozBqP46IBAwF+5ZBGn/rFui/blSOzd1l2dNe+vo7e1lPQMdVzCaPz6Y5Fq61JD6By8u24ZdWpYsbg6Nlk6nhhqVClYnu1YXXo24Bx7W7KmjV1LSFGfd9ac+OtyPMJ0EG84Ep/f3W1cPZPFXaQVwDFMi0MxYJjbICxH6okKELbIW7Zsmc2fBweHL774wubPQ/bRsFKwfDO4hRy7Gqf2uV9+8LKsPRqhTh1rlVbBfcuqhTOvLi9z0Sf+eVg61CwtgX7ehTKqB4+0qGgU0EPlkgFyd92ysuZIhHy86rjc16i8+kHUsmoJ9d5Zkn2+In5A5ZYK+cFDDfUByM3UDDl4MUb2XYiRveduyN7zMRKdkKIWQ8Rp/ras+4QU9ZUm2mh+5RLSuHKwBPjyX7Ej4GJmtuUK7y++0xuORapAfvPJKElMvT367uvlqToEEcR3qV1GHY8M5XY8ebdvAzkZGS+Ld11Qx4znf9groaUCZHiHMHm4eSVm/RSywgzi87t1LpEh/pIgKkBYHPCFF16w+fNgVXxyfXXKBckXjzeVl7vVlJkbTqt0/H9ORKlT62ol5cW7a0pbG6dp5mUuekRcitSfuFr8vD0luIiPFA/wUX9xCrr11/Bk6nY/b688j+rB/K3nVFpj9lHTeuWDVFC/+tYJAny9JMngx3de5ytakwpZxNdLWoeVUidAEtylmJsquN93PivIP3I5VqITUvUdNIDnw4geRvK1Ef1qIYFOPZrvrHJr69piZkPm7pQaZYrq2zH+Fi/iK8Ha5VttGttZkvXvryMtFofv8ZErcSqlHruWICvHML8V6dRda2eNxrerEWKxYzOvx5OX7q4pC7afk++2n5Vz15Jk/O//ybS1J2RYu2oysHWoamdknyAex+q7wkrqg/hSBRTEExUEBvVERA6ueumi8umjjdWPva82nZYley6orXEGzPlXmlUpLi90rSmda5e2SSBozcJNKemZEhmfok7W8vfJ6hDICop8pZi/t1o40FKqavZRPXQCfL4u50J3WkD/RKsq0rFWiFXzFXEdnsPaVEh8FtieEKf7G1dQ1yWnZcjhy7FqDQCc9p6/oeqBoAGnRf9mra2BILFpZS3IzxrNL+bPH/K2EpecJltPRsuCbWfzVH7LqWh1yk0xP2/VaaWC/luBv/6yUeeWr74MLhfx8XKqTp28pAonpqTLr3sv5unxIuPsu1gcvqfbTkfr0+qzd0RgrYyudbIC+QYVgtWOJnmVl+MJAsXR3WvJsx3D1IKgczaHqw7Cj1cfl5kbTsnjrarIk+2rSYXiRQr0dbtjEL/1ZKQsOeMpX36xVU5GJuYowyCenAmDeiIiJ4F08ykPNlTp99/8c0ZtgYcR4GHzd0mDikEyqktN6VKzYNPy87on7pwhLdQPoNibaTlOMUlZf+NM3IaACiNfyWmZkpyWokb98yL7qJ6l1F7NhuORMrlfA6uD9IJKhUT6bPPQkuqkuRJ781aQnzWaf+hSrHq/sFgiToD4rlYZ49F8dPRYE0yQ8ejriYgE1R6QSr3n3A1Jz7YegiUDWleW4gG+6nOKQTu+1b5jbqaq67CII8SnpKsTAjJrII0bo7HaiH9WsJ8V+BtmuqAOWmYArkPHT2Gnree26B1e+3fbzqpjVV5XgP9yw0kp6u8tHaqXkMKCue7rjkWoEfmtp6PV8ciww7F9jdIqiEcwXzboztaOyevxBKP+anT+rlBZcfCKzNp0Wi3GNmdLuMzfdlbtkIKdPmqVzblDCudkm546cXsk/po6BmRBRk1WQM8gnpwZg3oiIieDEZp37q8vI7tUV6M4C3ecUyu+P7dwj9QqU1TaBHtIj0ydFMTYrvphE+gr1xJTLc5FxxxS/GisbOXjZ2bqVBCUPdjHFIPFt7aty0smQV6mCRh2AjhKem/54CJSvmERua9hVpZAanqmHL0Sp0bxtdH8izduqlRQnH7alfWeIJOhiX40P2t+PtNyzcNI8dZT0aqjZNPxSLmcra2ElQ5UW0z+sf+y3EhMtbhP9Lt9G1oMkLBDA9o0An5sbRZzq0NLdQKojoDUrHZ+q1MAZWJv4juQKmkZOknNyJSo+BR1sgY6f5AdgGDfcIqLfnoALuuzBG51CNwql5/52uamxyBAfm7hXrVuxIELsfoFJKuWClArhuO9sdSFghHTpxbsltpYOTzIQ+7JyJSCXicPx52Dl2Jl/dEIlVZ/+LLxjhkVgv3V+hxd65aRNmGl7Dqf3cfLU/o1rSh9m1RQ2+QhuEd6ODIfcLq7Thl5rnN1/Torrri7QH6D+H9vrUyP08lILYi/DW2srEecPNq5qbStWUZKBvrapa5EBYFBPRGRk8IIzLj76spznarL3C3hKn34RGSCnIj0kn8+3yrPd62pfgjiR2F+pWdmmr1/Qeydi9FmNRc5W0CKH1d5Ceq1TIK8ThNw9H2gfb091Q4HOA1rd7vOWso+RvSxiBYCo80no9VJU710oErX1wJ9jOC56+ictsUYthvEiDw6cxAwa7D+A9aj6FKnjHSuVUa/6CLWqrjTfaIxl75EoK86iQRaVWdMFdFG/1Xwr2UD6DNesjoEtA4CrRMsISVdZbxgNByn89fzN/1FWxvAMEtA6wAw7CBApxIWyLS0gObeczHqL97np9pXUx1/fx+5muvik2eiE2Xh9nNyPCJBjkd4yYbpW2VE5xryUPOKRmtvWDsajfdoy0mk1Ueozh0Effrn9xA15QWBPEbkMWLraFMgUJ/Otcuo0/4LMfL1ptOy6vBV1SmBU/PQEmpR0K83nTHZ0YL33ZV3b8hLEF+nXLFbC9uVlFbVSkkxXw+1OnmP+mUdcocFImswqCcicnIIgF/rUVuGdwyTuZtPy+x/Tkn4tSR57ZcDMn3dCRnRKecP4ryatfGMXI1LVj/iseCcYXq8LffOxQ90jC6Z2wIq+2r1eZ0mkNdyjgR17lG/nDppI8FIw0WArwL9CzESHp0op6OyTkv2ZM1dDvT1Up0DWto+RvZdOZ00KTVdtp++pg/kkeFgCCuJI7DE+hN3mRl9tec+0QjakHKNU0Ur50unZWQaTXVB8J898NeyBgyzBHAewbG101/y6sOHGkr/llWsfn9Hdqoh87aekdmbTsqFGzdl3NJDarE4rAT/ROsqauX5vIxGY5tLBPEIehHwIQtCg20xkZ2BlHq0CWf6buC7/NXA5nImKkFmbw6XX/dcVNNIcBIn3l3A1kF89pF4bDlG5CoY1BMRuQiMpI3qUl0qJByX6OJ1Zd62c3LhetYPYux7j4WXHmtVJc+ppKci42XGhlPq/PsPNFQp4oU1TzMvW8oZjppa2wngzDAS3KBisDoNapN1HdKa91+4oUZH9124IfvPx6jttrDYIE4apEBjNF8L9GuXK3ZHmRz2hs4MzIvfeCJK/bDH9AXDrAeMvCOQx4g8dhXIi/wujmhP+AyxnZa1W2ohOwAj2Frwr/97q1PgdgeAweWbaSqgMsx8MMdcx0lu7y+yBZ7vHCYV4o9JbEh9mbv1nArg31t5VD5be8JoN4vso9Gv3lNLElIyVDCfPdBDx87ddbJG45GujjbizMJKF1XrrLzSvaa8t/yo/HHgslPtLmANTEf5NzwrgMf0g1MWg/isOfFMpyd3wqCeiMjF+HuJPNOhmjzZvrpaoOrrf06rH3PvLDsiX244Lc90rCYDWofm2H7JMJ21dFE/+WzNCTWy1aV2aendqLwaSSzMH4PWjJpa2wngavDjtWudsuqkfZbY81rNyz93Q43m40fw2WtJ6rR03yV92nWjSrdH8/HXkbMZsDI5ftRjNH7j8Uj1WgxhhLtLndIqkEdbDfDN388cd9knGt9pLLCHkzXrYSAj4vHZO3ItZ64t5fX99fMSGdomVIa0DZPf912SrzZmZSGZon3nP/n7hNHztAgtId1uzY8Pc9HtIvE+4/VZCuqdZQpSfoN4dOBlTXkhck8M6onyqXPnztKkSROZNm2axXIdO3aU5557Tp544gmb1SU6Olrq1asne/fulUqVKtnseci5YO90bH004K4q8svui/LVxtNqNer3Vx5T5zHPdXDbqhLk72NycSXASBZWjLfXD2FrRk3tmTrtaPD+1CkXpE7YAgsw4rr/4u0gH+n7mJuP9xYnTaUSRbJG87EQX2gJqVc+yK4jmkih1laq337mmtHK5D5eHqo9YF48gnnsCuCKQZujKezMGLS/R1tWlooliqitPHPTrnop6d+qinSqWdptFpB09ilIOL5r6fTYstVUEF+3fNDt1emrMognMsSg3g0NHTpUFixYoL9csmRJadmypXz00UfSqFEju9bN1fz5558SEREhjz32mP665ORkGTdunCxevFhSUlKkR48eMnPmTClbNmuEzVyK5MSJE2X27NkSExMj7dq1k6+++kpq1qypbg8JCZHBgwerMt9++22hvDZyHphLj22R+resrEZosdcxRjgxovX1P2ekQ40Q+eu/qyZ/nCOd+b9LsWq/dXuxZtTUGVOnCwuCG8whxklbAfxMdILaSk+bn48V9jEXHadlt0b9EFBhb24E+Y0qFpMYK6ddW7ugWUp6huwKv5EVyB+PlDNRxvtHI5jMWjCstLSrEaLmRlPhsldmjOHidpagA+D+xhXEnTjbFCTDIB4nrAeSHYN4orzjf0I31bNnT5k3b546f/XqVRk/frz07t1bzp8/n+/HTE1NFV/fwjngIsjNyMgQb2/HbsKff/65DBs2TDw9b49yIaBfu3at/PLLLxIcHCyjRo2SBx98ULZu3Wr2cdDhgsdCZ0y1atXk7bffVp0BR44cEX//rF53PE/z5s3l448/Vh01RKbm3T7aorI82LSirDh0Rb5cf0rNOV3531Wz93HGxZXcJXX6TmHngRpliqkT2gXEJ6ep1fUR5GvB/o2ktGyLcHnLzFOb1Grb2EoPW5fVrxBscv50XrfXQgYJ0uk3HIuSbaejjeZMaynUaqX62qUdcmVyd2SPzBhnH422JUefgpRbEI+vdN1yQdKaQTxRvjh2ROSkEhNz9jZqvLy89EFYbmURCBYpUiTXsoGBed8yR+Pn5yflymWtpIy/Y8aMkQ4dOkhUVJSULp01ivPmm2/K0qVL5eLFi6rMgAEDZMKECfptP9555x35/fffVVD63nvvyblz5yQzM1ONJL/22mvyxx9/qJHoFi1ayGeffSaNGzc2W59t27bJyJEj5dixY9KgQQPVyfDAAw/Ivn37VIr7xo0bpUuXLmrrEdx26NAh+fvvv6VNmzby+uuvy08//SRxcXH650LmAcyfP19efvllVScN6ozHRseA4et49dVXVbB848YNuffee9WoeLFixfTv/YgRI+S3335T1+H15Qbv5fr162X69On662JjY2XhwoXq1LVrV3UdOlfq1q0rO3bskLvuuivH46CeSPHH6+7bt6+67rvvvlMj+6i3lgVQv359qVChgvrMnnrqqTy0AnJXWGitb5OK0qdRBbWA3mdrT7rs4kpkHcytxug3TtrxB1kd2kj+nnPX5diVOLVK+spDV9VJS4OvVyFrNF+bn48Mj5GLTO9jjsDjpW415WZqhhqNPxFhnGpbppifCuAxN75dzRA1RYQcT2FnxjjbaLSjdLQgS+eDBxsW6hSkyLhk2RF+O4g/YyaIv706fUm1fSIRuXhQf/36dXnhhRdk2bJlKth96KGHVLBUtGhRs/d59tln1Yjo5cuXVbm2bdvKhx9+KHXq1LFpXS3V6b777pMVK1boL5cpU0aSkkwv+tKpUycVzGqqVq2q5k5npwWn+ZWQkKCCzBo1akipUrd/tCN4RVCMQBFB9PDhw9V1b7zxhr7MqVOn5Ndff1XBLjos4JFHHlGdEX/99Zcaif7666/l7rvvlhMnTpgcQUYw3qdPH/Xe/PDDD6pzAIG4Keh8+OSTTyQsLExKlCih6oLnxwh2aGioGtHGCDbqZc1o9enTp1WAvHz5chXUP/roo/LBBx+ozgpAx8GmTZtURwU+M4y2Y/46OhzM2bJliwQEBKiAXbNnzx61hUq3bt3016E9VqlSRbZv324yqA8PD1fZFIb3wfvaunVrdR/D1P5WrVrJ5s2bGdRTnkdqq+ZxRXBnWVyJChZGxLFqPE4PNqukjl9Ll62UCg3ukkOXkbqPYP+GRCekyoELMeo0f1vWfRHXWdrHfJpBZxLKoiNAG43HPH6OxjuHwsyMcfTRaEfraJm/NVxWH4mQuuWK2TygZxBPZF9OE9RjlPjKlSuyZs0a9aMCqcbPPPOMCgLNQSoy7oeACZ0CGJG95557VJCkBaDuCsGr1vmAUejy5cur6wzTxDEybNihgNFpjIgbBvVIuceosTa6j0B2586dEhkZqbIBAEE4AuYlS5aozyw7fIb48YaRcWQxYMG3S5cuqU6E7N59913p3r27vt6YV46OB4ysAx4DbQTzyhGI5xUyDPA42sj8oEGDZN26dSqoR6cHHg8dH+icAHQi5LYgHTonMJpu+J4iOMcUheLFixuVRTncZop2ffY596bugw4YZDcQ5RXTWclaWJEcK023r1VW37GMOfhZAX5Wyv6hS7GSmYf+5g41Q1TqP/7yBz7lBRfEzHtHS+WSReTvoxGy/cx1tf1jXrd1zIsIBPG3VqbHKvWmgnh0zum3mKta0m0WLSSyB6cI6o8ePSqrVq2SXbt2qfRq+OKLL9TILgJGBDKmGAaQCEr/97//qRTws2fPSvXq1W1WXwSB5mTvTEDwa45hMAiod0FBKjsCYsDINBZqQ2CMgBwj3oCF3DCPG6PYeE3p6ekSFBRk9DgoqwX0cODAAVXWcMQfbt68qR7HlOPHj6sF+gynJWDE2RTt8wc8Hjp4sGicBlMDcF+0GWugfWgBPaCTQ/ts8DzovMDIuAZZALVr17b4mHjNhq+pMCBDwlzmB5EpTGelO4VO2colA9QJ0zpgyZ4L8tovB3O978PNK0kfN1vQjO4cF8TMGyxw2rlWadlwPEp+2nVext57O3PwjoJ4jMRHM4gnciROEdQjxRgjm4YBHVKREfT++++/an50bjCqi7nLWGSscmXzu7FiDjhOhqnhGgSQhnAZIxQY5cVJYzgP3pSCLmtYJi9QZ6SFI4Vd880336h0dvydPHmyes+R5aBlNyDdG0H+1KlT9c+Hx8F8fsPnj4+PVwEx5pJnh8/QVF216QOGt2nntfdWu4z3wPA2wzKGj6d9Ltplw9u1z9fwdnQGZK9b9ufO/jymHtsQAn90mBjejtF1dBDgerzfGqyQj9tMPRbS/QGZKoaj9bgPOqkM73Pt2jW1Er61beJO4LnwPuD74O4ZMI5AO05lP15Z8ta9teWFnw6YTWfF7ZkZ6ZJ5e+0yclN5bV/liuVt1L1UgLdVbZXcR17aWosqGGjIGmzgMcq0R5tXVEH9z7vOy11Vi6uFL7FmBRaftNQJgiB+59kb8m/4DdV5En4tyUQ6fTGVtdO6aglpUbWEBBcxDuId/budn/+XRIXZvqy5r1ME9Ugx1gIbDVY9R9BkLmVZgxFopIsjqMfIKlKzLa3QPmXKFJk0aZLJ23Df7HXAAnIYmUag5izQQDDqbthhgcAMnSRYyA3Xb9iwQXV+YBE8DeapI3jT7ofgGCvQGz4O3mN8Jti2DdMesjMsq0E5pLZjYTktZR/zwgGfG+6jjT6j00DLYECGAD5LrJuAefzaa0NGB/aFx/3Q6YD7ICDWFhRENoJhXUy9DtQf7wmuw/Mg6Mf6Bv369VO3Y+E9rBGAOfCmXhPUqlVLvRfYUUBLt8d1eCysq3D//fer606ePKnKNGzY0ORjIesBwTwWCdQ6YlAOHVrYxs7wPsiUaN++vdk62QLaPrIS/vnnH9WuyDFkP17lZlgtD/ntrKfEpN7+kRfsq5MHq2ZKxrk9svKcDSpJLtu+kHpf3NdLYtS/RlOBg06K+4pEHdkhK61LrCI3Y+2xjIxl6ESKeHnJjaR0GbZgr/764reO741LZXXlxqaKnIz1kFNxWaeoZOPvrYfopGKgSI0gndQM0klYkE4CvG+I6G5ISrjI1nBxWmxj5Kjty5rsW7sG9Vj0DAvXWWJtGnV2GG3GHGwEdUjVxwJo2DrMXFr02LFjZfTo0frLCI60kX08jrbyuxb4XbhwQc1NL+w06zuB14AgVmsoGDWeMWOG6pzA1mpIsccK9Fj1HoEkVpLHXwSiSLPUUvARgGNk1jAlH4EqVqRHsImF5hDEYqFC3B8BsWG2hebJJ59Uc9cxBx4r7iPARWcM4L3F4yOzAJAirz0f/iJ4RzZBxYoVVecAtnNDgImV9HE7phngvmhnWGgRgTDWBdDub+514PNE5wGuwwl1xPNgHj06mLDeAG5Hp0L2KQkaBNcYNT948KDaLlCr/8CBA9Uq+6gz7vvSSy+p90ybrw9YVwDviZaFgoUD8RrwuSDbBLsQYNrJ448/rm97+DwR1ON9N1cnW8D3ABkUHTt2dKrvgatCxxb+gWQ/XuXmPhF5I1Mnu8/dkMj4lDyN5JD7saZ9+VSNUBkgYjIDxEP+92Bj6VHfeK0Qojs9lpGx1Ycj5OaOrO+hIXTgzj3hJe2ql5RLMclql4uc6fTFpHVVLGpXQlqGlpCgbCPxzo5tjBy9fVkzSGfXoB5biA0dOtRiGYxMYjQ8+9xzjAhi8TttWzZzkDaOU82aNdWoKlKeseUXgiFTEOBpo8XZ4QMx/FAQGCPIRXCXff67I0OdV69erYJKLdDECuzYN13bZg0B+CuvvCIvvviiGsnu1auXCkQR2GqvVVuZOPtrRwD/1ltvqRXYMfqOzwgBH9LyTb1PGMXGrgbYMq5Zs2ZqxBpB6xNPPKECcsP3N/t7jUAX2QNDhgxRI/LoNMBr0+b0I6hGFgA6DObMmaMCZ7wGrLdg6XVkvw4dQsgawJZyeL/QdvFF0z5/U3A9FnT88ccf9aPyGP1///331YJ/yC7Ae4vV+tGJYfg4WGfAMCsBnR0I2tGJgSwBdBhgnQmtswPwHqJjA7smFCbUEe9D9u8H2Vd+Pg+U1hY/I7rT9tW7SSXx9vbigmZ0R/i/Jf8yMnXy3l/HLZbZevq6+ov+2/oVglU6PebEt6xWMkc6vatiGyNHbV/W3M9Dd6f7oRUCjNZj5HL37t1qRXvAHuU9e/ZUo8nmFsrLDgEUgnoEULl1JmgQuKFTACu0P/zwwzlG6rGSPkZOOUJZsBYtWqQCYkwHyG3dAUeG9HvsH4/t77CooJbSj5H0gu4IQqcVOmHQGVKY+D1wvJ5hdKxhIVH+SCFHaF8ILLigGVmLx7I7t/30NXl89o5cy73eo5YMvKuq2wTxGrYxcvT2pcWhiIdyy8J1ijn12OcbATy2OJs1a5Z6kzDXG/tzawE9tkDDKCy2V8Pq52fOnFELu2GRN8yJRvCPtGQEiHhzybHgc0NWBrIHkEKOkWlMlXDmgB6QpYDt8DClQNtVwBaio6PV1AlzGShERO6wjzkR3YaOtLyuku9uAT2Rq3GKoF4buUUgj8AdI5wPPfSQ2m5Ng0AfKcvaPHGMGGKxtWnTpqk541hoDCng27Zty7HoHjnGiDZS7vEXafpITcecclegLa5nS5hmgAUhiYiIiACZMQVZjogcl9ME9VjpHinwlvYZN5xJgBF8pDyQc0BAyqCUiIiIqGBgqkv5YH+5GptstFilxuPWGhcoR0TOzXlWdyMiIiIiojxPfcGilJB9FQvtMm7nGhdEzo9BfQFwgrUGiWyG7Z+IiMgxYZeJrwY2UyPyhnAZ13MXCiLX4DTp945IW8kQ8/idfUE3ovzS1rHgyrFERESOB4F793rluAsFkQtjUH8HvLy81B7rkZGR6jL2DNf2NycyBVvapaamqm3gCnpLO3uM0COgR/vH9wDfByIiInI83IWCyLUxqC+ALctAC+yJcguEb968qTI7XKUDCAG99j0gIiIiIqLCxaD+DiEwwxZs2CYP2+oRWYI28s8//6jtFV0hXR2vgSP0RERERET2w6C+gCCwYXBDuUEbSU9PF39/f5cI6omIiIiIyL6ce1IvERERERERkRtjUE9ERERERETkpBjUExERERERETkpzqnPw2rlgK274uLiOA+a7nihPLYlsiW2MbIlti8qLGxrZGtsY+To7Qv3NYxHLfHQ5aWUG7t48aJUrlzZ3tUgIiIiIiIiN3PhwgWpVKmSxTIM6nORmZkpx48fl3r16qk3NCgoyN5VIieGHjd0ErEtka2wjZEtsX1RYWFbI1tjGyNHb18I0+Pj46VChQri6Wl51jzT73OBN7BixYrqPD4QfumpILAtka2xjZEtsX1RYWFbI1tjGyNHbl/BwcF5KseF8oiIiIiIiIicFIN6IiIiIiIiIifFoD4P/Pz8ZOLEieov0Z1gWyJbYxsjW2L7osLCtka2xjZGrtS+uFAeERERERERkZPiSD0RERERERGRk2JQT0REREREROSkGNQTEREREREROSkG9URERHRHPDw85Pfff7d3NYiIiNySWwT1U6ZMkZYtW0qxYsWkTJky0q9fPzl+/LhRmeTkZHn++eelVKlSUrRoUXnooYckIiJCf/uBAwfk8ccfl8qVK0uRIkWkbt26Mn36dKPH2LJli7Rr1049BsrUqVNHPvvss0J7nWQfQ4cOVT9on3vuuRy3oU3hNpQhyg+2L7IHtCn8ryQqaFFRUTJixAipUqWKWhW6XLly0qNHD9m6dau9q0Yu9D/zgw8+MLoenY64nsgRY0hDOBZ6e3tLkyZNrKqrWwT1mzZtUm/2jh07ZM2aNZKWlib33HOPJCYm6su88sorsmzZMvnll19U+cuXL8uDDz6ov33Pnj3qw1y4cKEcPnxY3nrrLRk7dqx8+eWX+jKBgYEyatQo+eeff+To0aMyfvx4dfrmm28K/TVT4cIX9aeffpKbN28afcl/+OEH9cPlTqC9knuzZfsiIipM+MG7b98+WbBggZw4cUL+/PNP6dy5s1y7ds3eVSMX4e/vLx9++KHcuHHD3lUhJ7epkGJITUxMjAwePFjuvvtu6yurc0ORkZHYxk+3adMmdTkmJkbn4+Oj++WXX/Rljh49qsps377d7OOMHDlS16VLF4vP9cADD+gGDhxYgLUnRzNkyBBd3759dQ0aNNAtXLhQf/2iRYt0jRo1UrehDPz111+6du3a6YKDg3UlS5bU9erVS3fq1Cn9fcLDw1W7++mnn3QdO3bU+fn56ebNm2eX10Wu175wvHr++edzHA9x/Fu7dm0hvipylnYHoaGhus8++8zo9saNG+smTpyov4zj1tKlSwu9nuRcbty4odrKxo0bLZZ56qmndCEhIbpixYqp49b+/fv1t6Pdof3NmjVLV6lSJV2RIkV0jzzyiPotR4RjV+/evXV16tTRvf766/rrcXwyDHuWLFmiq1evns7X11cd4z755BP9bWPHjtW1atUqx2Pjf+6kSZMK4VWQu8aQ/fv3140fP15/nLOGW4zUZxcbG6v+lixZUt+Dgp6Xbt266csgdR4jYNu3b7f4ONpjmIKe6G3btkmnTp0KtP7kmJ588kmZN2+e/vLcuXNl2LBhRmXQszd69GjZvXu3rFu3Tjw9PeWBBx6QzMxMo3JjxoyRl156SWV8IC2RqCDa19NPP61G91NSUvT3Qc9xxYoVpWvXroX4aojIHSE1FSekQhsehww98sgjEhkZKX/99Zf6fdasWTM1anX9+nV9mVOnTsnPP/+sRsdWrVqlfm+NHDmyEF8JOTIvLy95//335YsvvpCLFy/muB3t6tFHH5XHHntMDh06JO+88468/fbbMn/+fHX7gAEDZOfOnXL69Gn9fTDCevDgQXniiScK9bWQ+8SQ8+bNkzNnzsjEiRPzVTe3C+rx4/bll19Wc98bNGigrrt69ar4+vpK8eLFjcqWLVtW3WYKgvXFixfLM888k+O2SpUqqXliLVq0UCkb+CFNrm/gwIFqXYVz586pE+bE4LrsaYdIyalRo4aaK4PADP9Qjhw5YlQObRTlqlWrJuXLly/kV0Ku2r60dLA//vhDfx/8iNHmIBIR2RLmieKYg9R7/ObCb7Fx48apYAlwjEMwhTRW/IaqWbOmfPLJJ6rskiVLjKYffffdd+o417FjRxW8YYqSud9s5H7QoY32YSpAmjp1quooQiBfq1Yt9T8Q02c//vhjdXv9+vWlcePGqhNcs2jRImndurX6/0ruKdOGMeTJkyfVgB4GWnCczA+3C+oRZP/333/q4J9fuH/fvn3VgQLzKrLbvHmzGimbNWuWTJs2TX788cc7rDU5g9KlS0uvXr3UDxb0tuF8SEiIURl8abFYRlhYmAQFBUnVqlXV9efPnzcqhx8zRAXdvjDPcNCgQSrYh71796rjGRfaI6LCgs5HzDnFXPqePXvKxo0b1Wg8jm1YUCohIUG/4JR2Cg8PNxo1xSgYMow0bdq0UT+4sy9gRe4N8+rRgYSsR0O4jMDMEC7jf2hGRoZ+tF4L6jHDCL/lcR25r+dtFEOizSEDZNKkSaqTKb/y1xXgpNALt3z5crWQHUbTNVh5NTU1VS1OYNjTgpULcZshjHihdw+9K1gEzxSMrkLDhg3VYyCtBz+0yT1SpNHOYMaMGTlu79Onj4SGhsrs2bOlQoUK6kcIevvQ/gxh0UUiW7QvZA5h9AIpiegcQNo97kNkDqZxZE2bv40LeNKdQAdj9+7d1QmjpTgu4UcuUuiRnYZAP7vsI2FEuUEWB6YwYlEyazuv8bv9zTffVJ3fWKT2woUL0r9/f5vVldw3hoyPj1eDwZhGpP3Gw+83/N/FqP3ff/+dpymSbhHU40154YUXZOnSpeofhRZ0a5o3by4+Pj5qDip6kAG9vRjdQu+v4XwavKlDhgyR9957L0/PjQ/F3Lwxcj0YdcCXG6nM2efCY2VftCsEXB06dNCnGhIVZvtCZyMyQVAOoxCmVl8lyp4lcuXKFf3luLg4NXJKVFDq1aun5tljxB4pq/ghq2UamYLfZxjtR+clYGVqdD7Vrl27EGtNzgBb26Ej27BtYEux7Fso4jJGSTEfHxC4YU0spN0jqEcHFFYwJ/eiK4QYEpmVmCppaObMmbJ+/Xo17Sj7c7p1UI90Cfx4xTxS7DOozXEIDg5W+wXi71NPPaUWmMKiBXhz8QHiw7jrrrv06RL4MPBDGuW0x8CXHz94tJEzpIRhgQRAbw7mgr344ot2e+1UuNAetDQv7R+DpkSJEiqlEFscYiQCX3jMnyEq7PaFUTH0BiMjBPMOiSzB/z6kRiMTBCMREyZMyNH+iPICnY9YCA9ZR40aNVK/yTBC9dFHH6mUVCw2hd9e2Asa1yHIQvC+YsUKdazSpqZhpB8/jvEbC51M+J2Fhc+yj4wRoSMbafOff/65/rpXX31V7T0+efJkNfqOBc3QwY1AyhDuhwwSdKZ/9tlndqg9uUMM6enpqZ+jr0EHEo5z2a+3SOcG8DJNnQy3Crt586baXqBEiRK6gIAAtRXdlStX9LdjawFTj4FtMDSff/65rn79+ur+QUFBuqZNm+pmzpypy8jIKPTXTPbZ+skUwy3H1qxZo6tbt67aqg5bo2BbH8OtoLQt7fbt21do9Sf3aV+a+Ph4dZzCMY/IlEGDBukeeughdT42NlZts4P/a5UrV9bNnz+fW9pRviQnJ+vGjBmja9asmdp6E8eh2rVrqy2ckpKSVJm4uDjdCy+8oKtQoYLaKgptbsCAAbrz58+r27WtnvD7CmX8/f11Dz/8sO769et2fnXkqP8z8dsKW9eZ2tIObaxKlSq6jz/+2OT2ivh/inaK/5vkfqSQYsjs8rOlncetChMRkZs4e/asVK9eXXbt2qXSXYlMTfXAKs+cnkGOBusUIVV///799q4KEZHDcLvV74mI3BUWN0PaFxZoQVoYA3rK7saNG2oxIMwdNNx3l4iIiByXW8ypJyKirIWAunTpouapGu75TKTBXGdkcGDOKeY4ExERkeNj+j0RERERERGRk2L6PREREREREZGTYlBPRERERERE5KQY1BMRERERERE5KQb1RERERERERE6KQT0RERERERGRk2JQT0REREREROSkGNQTERGRRUOHDhUPDw918vHxkbJly0r37t1l7ty5kpmZmefHmT9/vhQvXtymdSUiInI3DOqJiIgoVz179pQrV67I2bNn5a+//pIuXbrISy+9JL1795b09HR7V4+IiMhtMagnIiKiXPn5+Um5cuWkYsWK0qxZMxk3bpz88ccfKsDHCDxMnTpVGjZsKIGBgVK5cmUZOXKkJCQkqNs2btwow4YNk9jYWP2o/zvvvKNuS0lJkddee009Nu7bunVrVZ6IiIhyx6CeiIiI8qVr167SuHFj+e2339RlT09P+fzzz+Xw4cOyYMECWb9+vbzxxhvqtrZt28q0adMkKChIjfjjhEAeRo0aJdu3b5effvpJDh48KI888ojKDDh58qRdXx8REZEz8NDpdDp7V4KIiIgce059TEyM/P777zlue+yxx1QgfuTIkRy3LVmyRJ577jmJjo5WlzGi//LLL6vH0pw/f17CwsLU3woVKuiv79atm7Rq1Uref/99m70uIiIiV+Bt7woQERGR88LYAFLpYe3atTJlyhQ5duyYxMXFqbn2ycnJkpSUJAEBASbvf+jQIcnIyJBatWoZXY+U/FKlShXKayAiInJmDOqJiIgo344ePSrVqlVTC+hh0bwRI0bIe++9JyVLlpQtW7bIU089JampqWaDesy59/Lykj179qi/hooWLVpIr4KIiMh5MagnIiKifMGceYy0v/LKKyoox/Z2n376qZpbDz///LNReV9fXzUqb6hp06bqusjISOnQoUOh1p+IiMgVMKgnIiKiXCEd/urVqyoAj4iIkFWrVqlUe4zODx48WP777z9JS0uTL774Qvr06SNbt26VWbNmGT1G1apV1cj8unXr1AJ7GL1H2v2AAQPUY6BDAEF+VFSUKtOoUSPp1auX3V4zERGRM+Dq90RERJQrBPHly5dXgTlWpt+wYYNa6R7b2iFtHkE6trT78MMPpUGDBrJo0SIV9BvCCvhYOK9///5SunRp+eijj9T18+bNU0H9q6++KrVr15Z+/frJrl27pEqVKnZ6tURERM6Dq98TEREREREROSmO1BMRERERERE5KQb1RERERERERE6KQT0RERERERGRk2JQT0REREREROSkGNQTEREREREROSkG9UREREREREROikE9ERERERERkZNiUE9ERERERETkpBjUExERERERETkpBvVERERERERETopBPREREREREZE4p/8DBtocZ8nA++4AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ndsi_timeseries = ndsi_masked.mean(dim=[\"y\", \"x\"])\n",
+ "ndsi_timeseries.plot(marker=\"o\", figsize=(12, 4))\n",
+ "\n",
+ "# Reference lines\n",
+ "plt.axhline(0.4, color=\"blue\", linestyle=\"--\", label=\"Snow threshold (0.4)\")\n",
+ "plt.axhline(0.2, color=\"gray\", linestyle=\"--\", label=\"Mixed snow (0.2)\")\n",
+ "plt.axhline(0.0, color=\"black\", linestyle=\"--\", label=\"Bare ground (0.0)\")\n",
+ "\n",
+ "plt.title(\"Mean NDSI Over Time\")\n",
+ "plt.xlabel(\"Date\")\n",
+ "plt.ylabel(\"NDSI\")\n",
+ "plt.legend()\n",
+ "plt.grid(True)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "70f98e20",
+ "metadata": {},
+ "source": [
+ "> 🔍 **Note on Gaps in the NDSI Time Series**\n",
+ ">\n",
+ "> Breaks in the line plot occur when scenes are fully masked due to clouds or shadows — resulting in no valid NDSI values for that date.\n",
+ "> These time steps appear as `NaN` in the data and are rendered as gaps in the plot.\n",
+ ">\n",
+ "> This is expected behavior and helps highlight when cloud-free observations were not available for the selected area and time range."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a293cde1",
+ "metadata": {},
+ "source": [
+ "### ❄️ Interpreting NDSI Values\n",
+ "\n",
+ "The **Normalized Difference Snow Index (NDSI)** is a powerful tool for identifying snow cover in satellite imagery by comparing reflectance in the green and shortwave infrared (SWIR) bands. \n",
+ "Snow is typically **bright in the green band** and **absorptive in the SWIR band**, leading to high NDSI values.\n",
+ "\n",
+ "#### Thresholds and Uncertainty\n",
+ "\n",
+ "Interpreting NDSI values isn't always straightforward — thresholds can vary depending on:\n",
+ "- **land cover** (e.g., forested vs. open terrain),\n",
+ "- **illumination and sensor angle**,\n",
+ "- **scene conditions** (e.g., snow under cloud shadow or mixed with vegetation).\n",
+ "\n",
+ "That said, commonly used guidelines include:\n",
+ "\n",
+ "| NDSI Value Range | Interpretation |\n",
+ "|------------------|--------------------------------------------|\n",
+ "| > **0.4** | Likely **snow-covered** surface |\n",
+ "| 0.2 – 0.4 | Possibly **mixed snow** or patchy areas |\n",
+ "| 0.0 – 0.2 | Bare ground or dry soil |\n",
+ "| < **0.0** | Water, vegetation, or cloud shadow |\n",
+ "\n",
+ "These are not hard rules — think of them as **decision aids** rather than strict classifiers.\n",
+ "\n",
+ "In this notebook, we include horizontal reference lines on the NDSI time series plot to help guide interpretation. \n",
+ "However, if your AOI is forested, coastal, or mountainous, it may be worth adjusting the snow threshold or inspecting example scenes visually for validation."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a5464d8d",
+ "metadata": {},
+ "source": [
+ "### 📤 Exporting Results for Use in Power BI\n",
+ "\n",
+ "To make the NDSI results available in external tools like Power BI, we can export a simple table summarizing:\n",
+ "\n",
+ "- the **date** of each satellite scene,\n",
+ "- the **mean NDSI** value for that date,\n",
+ "- a **classified result** indicating snow presence (e.g., `\"snow\"`, `\"mixed\"`, or `\"no snow\"`).\n",
+ "\n",
+ "This table can be saved as a CSV file and uploaded to Power BI or other data analysis platforms for further visualization and reporting."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 139,
+ "id": "1131555f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create a DataFrame from the NDSI time series\n",
+ "ndsi_df = ndsi_timeseries.to_dataframe(name=\"ndsi\").reset_index()\n",
+ "\n",
+ "# Add a simple classification based on threshold\n",
+ "def classify_ndsi(value):\n",
+ " if pd.isna(value):\n",
+ " return \"no data\"\n",
+ " elif value > 0.4:\n",
+ " return \"snow\"\n",
+ " elif value > 0.2:\n",
+ " return \"mixed\"\n",
+ " else:\n",
+ " return \"no snow\"\n",
+ "\n",
+ "ndsi_df[\"classification\"] = ndsi_df[\"ndsi\"].apply(classify_ndsi)\n",
+ "\n",
+ "# Export to CSV\n",
+ "ndsi_df.to_csv(\"ndsi_summary.csv\", index=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5077e211",
+ "metadata": {},
+ "source": [
+ "### 📊 Visualizing Results in Power BI\n",
+ "\n",
+ "To explore the results interactively within Microsoft’s ecosystem, you can upload the `ndsi_summary.csv` file to [Power BI](https://app.powerbi.com/). \n",
+ "This allows you to create custom dashboards and visualizations—such as time series plots or spatial summaries—directly from your NDSI data, all within the familiar Microsoft suite."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a59fd87a",
+ "metadata": {},
+ "source": [
+ "## ✅ Next Steps\n",
+ "\n",
+ "This notebook introduced the core concepts of time-series monitoring using Sentinel-2 imagery and NDSI to detect snow cover over a user-defined area and date range.\n",
+ "\n",
+ "To continue exploring site monitoring workflows, check out the next notebook:\n",
+ "\n",
+ "👉 **[site-monitoring-hls.ipynb](./site-monitoring-hls.ipynb)** \n",
+ "This notebook uses HLS (Harmonized Landsat and Sentinel) data to demonstrate cross-sensor monitoring and highlight additional techniques like combining indices and refining temporal analysis.\n",
+ "\n",
+ "### 💡 Other ideas to try:\n",
+ "- Use NDVI to monitor vegetation changes before/after snow cover\n",
+ "- Compare results across different years to study seasonal patterns\n",
+ "- Apply thresholds to detect persistent snow vs. transient snowfall\n",
+ "- Export your xarray dataset for visualization in other GIS tools\n",
+ "\n",
+ "---\n",
+ "\n",
+ "## 📎 Supporting Materials\n",
+ "\n",
+ "- [Sentinel-2 STAC collection on Planetary Computer](https://planetarycomputer.microsoft.com/dataset/sentinel-2-l2a)\n",
+ "- [NDSI overview – USGS](https://www.usgs.gov/landsat-missions/normalized-difference-snow-index)\n",
+ "- [STAC specification](https://stacspec.org/)\n",
+ "- [ODC-STAC documentation](https://odc-stac.readthedocs.io/)\n",
+ "- [Xarray documentation](https://docs.xarray.dev/)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}