diff --git a/experiments/torchgeo/benchmark.py b/experiments/torchgeo/benchmark.py index f5d0fd8eba6..2db320d6af0 100755 --- a/experiments/torchgeo/benchmark.py +++ b/experiments/torchgeo/benchmark.py @@ -217,7 +217,7 @@ def main(args: argparse.Namespace) -> None: criterion = nn.CrossEntropyLoss() params = model.parameters() - optimizer = optim.SGD(params, lr=0.0001) + optimizer = optim.SGD(params, lr=0.0001) # type: ignore[attr-defined] device = torch.device('cuda' if torch.cuda.is_available() else 'cpu', args.device) model = model.to(device) diff --git a/requirements/required.txt b/requirements/required.txt index 8df573c362e..72ebd52e08c 100644 --- a/requirements/required.txt +++ b/requirements/required.txt @@ -17,6 +17,6 @@ rtree==1.3.0 segmentation-models-pytorch==0.3.3 shapely==2.0.5 timm==0.9.2 -torch==2.3.1 +torch==2.4.0 torchmetrics==1.4.0.post0 -torchvision==0.18.1 +torchvision==0.19.0 diff --git a/torchgeo/datasets/dfc2022.py b/torchgeo/datasets/dfc2022.py index dfc43927f30..46d96e87d3f 100644 --- a/torchgeo/datasets/dfc2022.py +++ b/torchgeo/datasets/dfc2022.py @@ -306,7 +306,7 @@ def plot( ncols = 2 image = sample['image'][:3] image = image.to(torch.uint8) - image = image.permute(1, 2, 0).numpy() + image_arr = image.permute(1, 2, 0).numpy() dem = sample['image'][-1].numpy() dem = percentile_normalization(dem, lower=0, upper=100, axis=(0, 1)) @@ -325,7 +325,7 @@ def plot( fig, axs = plt.subplots(nrows=1, ncols=ncols, figsize=(10, ncols * 10)) - axs[0].imshow(image) + axs[0].imshow(image_arr) axs[0].axis('off') axs[1].imshow(dem) axs[1].axis('off') diff --git a/torchgeo/datasets/nasa_marine_debris.py b/torchgeo/datasets/nasa_marine_debris.py index 66a2f5789ba..cf018150f2d 100644 --- a/torchgeo/datasets/nasa_marine_debris.py +++ b/torchgeo/datasets/nasa_marine_debris.py @@ -243,25 +243,25 @@ def plot( image = sample['image'] if 'boxes' in sample and len(sample['boxes']): image = draw_bounding_boxes(image=sample['image'], boxes=sample['boxes']) - image = image.permute((1, 2, 0)).numpy() + image_arr = image.permute((1, 2, 0)).numpy() if 'prediction_boxes' in sample and len(sample['prediction_boxes']): ncols += 1 preds = draw_bounding_boxes( image=sample['image'], boxes=sample['prediction_boxes'] ) - preds = preds.permute((1, 2, 0)).numpy() + preds_arr = preds.permute((1, 2, 0)).numpy() fig, axs = plt.subplots(ncols=ncols, figsize=(ncols * 10, 10)) if ncols < 2: - axs.imshow(image) + axs.imshow(image_arr) axs.axis('off') if show_titles: axs.set_title('Ground Truth') else: - axs[0].imshow(image) + axs[0].imshow(image_arr) axs[0].axis('off') - axs[1].imshow(preds) + axs[1].imshow(preds_arr) axs[1].axis('off') if show_titles: diff --git a/torchgeo/trainers/base.py b/torchgeo/trainers/base.py index 1f50ad0ab58..ecc6bc8c767 100644 --- a/torchgeo/trainers/base.py +++ b/torchgeo/trainers/base.py @@ -9,7 +9,7 @@ import lightning from lightning.pytorch import LightningModule -from torch.optim import AdamW +from torch.optim import AdamW # type: ignore[attr-defined] from torch.optim.lr_scheduler import ReduceLROnPlateau diff --git a/torchgeo/trainers/iobench.py b/torchgeo/trainers/iobench.py index c8826a1dce5..6ab5c7f9bc6 100644 --- a/torchgeo/trainers/iobench.py +++ b/torchgeo/trainers/iobench.py @@ -8,7 +8,7 @@ import lightning import torch from torch import Tensor -from torch.optim import SGD +from torch.optim import SGD # type: ignore[attr-defined] from .base import BaseTask diff --git a/torchgeo/trainers/moco.py b/torchgeo/trainers/moco.py index 73646c3868a..88bb0ffbcf4 100644 --- a/torchgeo/trainers/moco.py +++ b/torchgeo/trainers/moco.py @@ -19,7 +19,7 @@ from lightly.models.utils import deactivate_requires_grad, update_momentum from lightly.utils.scheduler import cosine_schedule from torch import Tensor -from torch.optim import SGD, AdamW, Optimizer +from torch.optim import SGD, AdamW, Optimizer # type: ignore[attr-defined] from torch.optim.lr_scheduler import ( CosineAnnealingLR, LinearLR, diff --git a/torchgeo/trainers/simclr.py b/torchgeo/trainers/simclr.py index ba9443e9191..ac6a7d4bcff 100644 --- a/torchgeo/trainers/simclr.py +++ b/torchgeo/trainers/simclr.py @@ -16,7 +16,7 @@ from lightly.loss import NTXentLoss from lightly.models.modules import SimCLRProjectionHead from torch import Tensor -from torch.optim import Adam +from torch.optim import Adam # type: ignore[attr-defined] from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR, SequentialLR from torchvision.models._api import WeightsEnum