This repository has been archived by the owner on May 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap2.lyx
9428 lines (6991 loc) · 184 KB
/
chap2.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass jcuthesis
\options sort&compress
\use_default_options true
\master thesis_main.lyx
\begin_modules
theorems-ams
theorems-ams-extended
theorems-sec
\end_modules
\maintain_unincluded_children false
\language australian
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type numerical
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Chapter
Non-perturbative Quantum Field Theory with n-Particle Irreducible Effective
Action Techniques
\begin_inset CommandInset label
LatexCommand label
name "chap:chap2"
\end_inset
\end_layout
\begin_layout Section
Synopsis
\end_layout
\begin_layout Standard
This chapter reviews the
\begin_inset Formula $n$
\end_inset
-particle irreducible effective action (
\begin_inset Formula $n$
\end_inset
PIEA) techniques for quantum field theory.
For
\begin_inset Formula $n>1$
\end_inset
the
\begin_inset Formula $n$
\end_inset
PIEAs are non-perturbative, effecting resummations of
\begin_inset Formula $2$
\end_inset
- through
\begin_inset Formula $n$
\end_inset
-th order correlation functions to infinite order in perturbation theory.
The equations of motion derived from
\begin_inset Formula $n$
\end_inset
PIEAs are closed, unlike the otherwise very similar Schwinger-Dyson equations
in quantum field theory or Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
equations of kinetic theory.
Because of this and the fact the the methods can be derived from first
principles and are manifestly self-consistent,
\begin_inset Formula $n$
\end_inset
PIEAs have been advocated for applications in non-equlibrium field theory
ranging from cold atom research to cosmology (see, e.g.,
\begin_inset CommandInset citation
LatexCommand citep
key "Berges2004,Berges2015"
\end_inset
).
For
\begin_inset Formula $n\geq3$
\end_inset
,
\begin_inset Formula $n$
\end_inset
PIEAs can provide the basis for a self-consistent first principles derivation
of kinetic theory (see, e.g.
\begin_inset CommandInset citation
LatexCommand citep
key "Carrington2009,Smolic2012,Berges2004"
\end_inset
).
\end_layout
\begin_layout Standard
In section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:The-1PI-effective"
\end_inset
the venerable (but perturbative) 1PIEA is introduced following standard
textbook treatments.
Then in section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:The-2PI-effective"
\end_inset
the non-perturbative 2PIEA is reviewed, following the reviews by Berges
\begin_inset CommandInset citation
LatexCommand citep
key "Berges2004,Berges2015"
\end_inset
and the extensive book by Calzetta and Hu
\begin_inset CommandInset citation
LatexCommand citep
key "Calzetta2008"
\end_inset
.
Here the full expression for the 2PIEA of a quartically coupled scalar
field theory is derived to three loop order.
The general pattern of higher
\begin_inset Formula $n$
\end_inset
PIEAs is then discussed in section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Higher-PI-effective"
\end_inset
, where the 3PIEA is explicitly derived for future reference.
Finally, section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Analytic-properties-of-2PIEA-and-resummation"
\end_inset
contains a novel discussion of the analytic properties of effective actions
using the 2PIEA of a toy model where exact results are available, so that
the 2PIEA results can be compared to perturbation theory and other resummation
methods.
This discussion is based on a paper published by the author
\begin_inset CommandInset citation
LatexCommand citep
key "Brown2015"
\end_inset
.
\end_layout
\begin_layout Section
The 1PI effective action
\begin_inset ERT
status open
\begin_layout Plain Layout
}{
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "sec:The-1PI-effective"
\end_inset
\end_layout
\begin_layout Standard
Generating functionals and effective action methods form the basis for the
rest of this work.
This section reviews the one particle irreducible effective action.
Originally developed by Goldstone, Salam and Weinberg
\begin_inset CommandInset citation
LatexCommand citep
key "Goldstone1962"
\end_inset
and, independently, Jona-Lasinio
\begin_inset CommandInset citation
LatexCommand citep
key "Jona-Lasinio1964"
\end_inset
, the 1PIEA is widely used, particularly in discussions of theories with
spontaneous symmetry breaking or gauge symmetries.
The treatment starts with the generating functional
\begin_inset Formula $Z\left[J\right]$
\end_inset
, closely related to the partition function described in section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Time-contours-Green-functions-NEQFT"
\end_inset
.
\begin_inset Formula $Z\left[J\right]$
\end_inset
generates all correlation functions of the field theory and can be related
to a Feynman diagram expansion.
From
\begin_inset Formula $Z\left[J\right]$
\end_inset
one derives
\begin_inset Formula $W\left[J\right]$
\end_inset
which contains only the
\begin_inset Quotes eld
\end_inset
connected
\begin_inset Quotes erd
\end_inset
correlation functions, i.e.
those whose diagrams are made of one connected component.
The 1PIEA
\begin_inset Formula $\Gamma\left[\varphi\right]$
\end_inset
is then found by Legendre transforming
\begin_inset Formula $W\left[J\right]$
\end_inset
and is the generating function of
\begin_inset Quotes eld
\end_inset
proper
\begin_inset Quotes erd
\end_inset
correlation functions, meaning those which cannot be divided by cutting
one line of the corresponding Feynman diagram.
The skeleton expansion of the connected generating functional provides
an elegant and systematic means of relating connected correlation functions
with the proper correlation functions.
Hence
\begin_inset Formula $\Gamma\left[\varphi\right]$
\end_inset
contains all of the physical information of a field theory in relatively
compact form.
Further, terms in the derivative expansion of
\begin_inset Formula $\Gamma\left[\varphi\right]$
\end_inset
have a direct physical meaning.
Most importantly, the term with no derivatives (the
\emph on
effective potential
\emph default
) is equal to the minimum of the energy, over all states
\begin_inset Formula $\Ket{\Psi}$
\end_inset
, subject to the constraint that the mean field is equal to
\begin_inset Formula $\left\langle \phi\right\rangle =\varphi$
\end_inset
.
\end_layout
\begin_layout Standard
The previous chapter outlined how using various choices of time contour
in the functional integral allow one to compute vacuum, finite temperature
and non-equilibrium properties of a field theory.
The differences between these formalisms are largely irrelevant to most
of the following considerations.
The important thing is that all observables of the theory can be computed
from a formula formally identical to
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:vacuum-to-vacuum-transition-matrix-element"
\end_inset
, only where the range of the integration variables, boundary conditions
and time contour are interpreted appropriately according to the particular
physical situation.
To that end it proves useful to generalise the generating functional
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:transition-amplitude-generating-functional"
\end_inset
to a quantity usually called the partition function:
\begin_inset Formula
\begin{equation}
Z\left[J\right]=\int\mathcal{D}\left[\phi\right]\exp\left[\frac{i}{\hbar}\left(S\left[\phi\right]+\int_{x}J\left(x\right)\phi\left(x\right)\right)\right],\label{eq:partition-function-for-1PIEA}
\end{equation}
\end_inset
where
\begin_inset Formula
\begin{equation}
S\left[\phi\right]=\int_{x}\mathcal{L}\left(\phi\right),
\end{equation}
\end_inset
is the classical action.
The only difference between
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:partition-function-for-1PIEA"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:transition-amplitude-generating-functional"
\end_inset
is that the time contour and boundary conditions of the functional integral
are hidden in the notation and can be re-interpreted as needed.
Then, the sought after generalisation of
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:vacuum-to-vacuum-transition-matrix-element"
\end_inset
is
\begin_inset Formula
\begin{equation}
G^{\left(n\right)}\left(x_{1},\cdots,x_{n}\right)\equiv\left\langle \mathrm{T}_{C}\left[\hat{\phi}\left(x_{1}\right)\cdots\hat{\phi}\left(x_{n}\right)\right]\right\rangle =\left.\frac{1}{Z\left[J\right]}\left(-i\hbar\frac{\delta}{\delta J\left(x_{1}\right)}\right)\cdots\left(-i\hbar\frac{\delta}{\delta J\left(x_{n}\right)}\right)Z\left[J\right]\right|_{J=0},
\end{equation}
\end_inset
which defines the functions
\begin_inset Formula $G^{\left(n\right)}$
\end_inset
,
\begin_inset Formula $n=1,2,3,\cdots$
\end_inset
, which are the contour ordered Green functions of the theory.
(There is no harm in defining also the trivial cases
\begin_inset Formula $G^{\left(0\right)}\equiv\left\langle 1\right\rangle =1$
\end_inset
and
\begin_inset Formula $G^{\left(n\right)}=0$
\end_inset
for
\begin_inset Formula $n<0$
\end_inset
, which makes some formulae simpler.)
\end_layout
\begin_layout Standard
Applying the trivial identity
\begin_inset Formula
\begin{equation}
0=\int\mathcal{D}\left[\phi\right]\frac{\delta}{\delta\phi\left(x_{1}\right)}F\left[\phi\right],
\end{equation}
\end_inset
where
\begin_inset Formula $F\left[\phi\right]$
\end_inset
is an arbitrary functional, to the case
\begin_inset Formula
\begin{equation}
F\left[\phi\right]=\phi\left(x_{2}\right)\cdots\phi\left(x_{n}\right)\exp\left[\frac{i}{\hbar}\left(\int_{x}\mathcal{L}\left(\phi\right)+J\left(x\right)\phi\left(x\right)\right)\right]
\end{equation}
\end_inset
and working out the derivative explicitly gives the
\emph on
Schwinger-Dyson equation
\emph default
\begin_inset Formula
\begin{multline}
\left\langle \mathrm{T}_{C}\left[\phi\left(x_{2}\right)\cdots\phi\left(x_{n}\right)\left(\frac{\delta S\left[\phi\right]}{\delta\phi\left(x_{1}\right)}+J\left(x_{1}\right)\right)\right]\right\rangle \\
=i\hbar\sum_{j=2}^{n}\delta_{C}\left(x_{1},x_{j}\right)G^{\left(n-2\right)}\left(\phi\left(x_{2}\right),\cdots\phi\left(x_{j-1}\right),\phi\left(x_{j+1}\right),\cdots,\phi\left(x_{n}\right)\right),
\end{multline}
\end_inset
which says that the classical equation of motion
\begin_inset Formula $\frac{\delta S\left[\phi\right]}{\delta\phi\left(x\right)}+J\left(x\right)=0$
\end_inset
is obeyed inside correlation functions up to the existence of delta function
\emph on
contact terms
\emph default
on the right hand side.
Substituting an explicit form for
\begin_inset Formula $S\left[\phi\right]$
\end_inset
gives a hierarchy of equations, one for each
\begin_inset Formula $n$
\end_inset
, connecting correlation functions for different values of
\begin_inset Formula $n$
\end_inset
.
This is exactly analogous to the BBGKY hierarchy in statistical mechanics
(see, e.g.,
\begin_inset CommandInset citation
LatexCommand citep
key "Born1946,Kirkwood1946"
\end_inset
).
Solving this hierarchy of equations in practice requires truncation at
some finite order, which necessitates invoking a closure ansatz approximating
some higher order correlation functions in terms of lower order ones.
This ansatz can be physically motivated but always involves some degree
of arbitrariness.
In contrast, while the higher
\begin_inset Formula $n$
\end_inset
PIEA discussed later provide a superficially very similar framework (a hierarchy
of equations of motion connecting correlation functions of different order),
the equations of motion resulting from
\begin_inset Formula $n$
\end_inset
PIEA are automatically self-consistent and closed, without requiring any
arbitrary ansatz or approximation.
\end_layout
\begin_layout Standard
Usually the Lagrangian can be written
\begin_inset Formula
\begin{equation}
\mathcal{L}\left(\phi\right)=\frac{1}{2}\phi\Delta_{0}^{-1}\phi-V_{\mathrm{int}}\left(\phi\right),
\end{equation}
\end_inset
where the first term is the quadratic part of the Lagrangian,
\begin_inset Formula $\Delta_{0}^{-1}$
\end_inset
is a differential operator and
\begin_inset Formula $V_{\mathrm{int}}\left(\phi\right)$
\end_inset
is a polynomial containing cubic and higher terms in
\begin_inset Formula $\phi$
\end_inset
.
In this case there is a perturbation expansion for
\begin_inset Formula $Z$
\end_inset
which can be derived by expanding the exponential in
\begin_inset Formula $V_{\mathrm{int}}\left(\phi\right)$
\end_inset
:
\begin_inset Formula
\begin{eqnarray}
Z\left[J\right] & = & \int\mathcal{D}\left[\phi\right]\exp\left[-\frac{i}{\hbar}\int_{x}V_{\mathrm{int}}\left(\phi\right)\right]\exp\left[\frac{i}{\hbar}\left(\int_{x}\frac{1}{2}\phi\Delta_{0}^{-1}\phi+J\left(x\right)\phi\left(x\right)\right)\right]\nonumber \\
& = & \int\mathcal{D}\left[\phi\right]\exp\left[-\frac{i}{\hbar}\int_{x}V_{\mathrm{int}}\left(-i\hbar\frac{\delta}{\delta J}\right)\right]\exp\left[\frac{i}{\hbar}\left(\int_{x}\frac{1}{2}\phi\Delta_{0}^{-1}\phi+J\left(x\right)\phi\left(x\right)\right)\right].
\end{eqnarray}
\end_inset
The
\begin_inset Formula $V_{\mathrm{int}}\left(-i\hbar\frac{\delta}{\delta J}\right)$
\end_inset
term can now be extracted from the integral
\begin_inset Foot
status open
\begin_layout Plain Layout
It is this step that is responsible for the asymptotic nature of perturbation
theory, c.f.
section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Analytic-properties-of-2PIEA-and-resummation"
\end_inset
.
\end_layout
\end_inset
, giving
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray}
Z\left[J\right] & = & \exp\left[-\frac{i}{\hbar}\int_{x}V_{\mathrm{int}}\left(-i\hbar\frac{\delta}{\delta J}\right)\right]\int\mathcal{D}\left[\phi\right]\exp\left[\frac{i}{\hbar}\left(\int_{x}\frac{1}{2}\phi\Delta_{0}^{-1}\phi+J\left(x\right)\phi\left(x\right)\right)\right]\nonumber \\
& = & \exp\left[-\frac{i}{\hbar}\int_{x}V_{\mathrm{int}}\left(-i\hbar\frac{\delta}{\delta J}\right)\right]\exp\left[-\frac{i}{\hbar}\frac{1}{2}J\Delta_{0}J\right]Z\left[0\right],
\end{eqnarray}
\end_inset
where the last line is obtained by completing the square in the exponent
of the Gaussian integral.
Thus
\begin_inset Formula
\begin{multline}
G^{\left(n\right)}\left(x_{1},\cdots,x_{n}\right)=\left(-i\hbar\frac{\delta}{\delta J\left(x_{1}\right)}\right)\cdots\left(-i\hbar\frac{\delta}{\delta J\left(x_{n}\right)}\right)\\
\times\left.\exp\left[-\frac{i}{\hbar}\int_{x}V_{\mathrm{int}}\left(-i\hbar\frac{\delta}{\delta J\left(x\right)}\right)\right]\exp\left[-\frac{i}{\hbar}\int_{xy}\frac{1}{2}J\left(x\right)\Delta_{0}\left(x,y\right)J\left(y\right)\right]\right|_{J=0}.
\end{multline}
\end_inset
Expanding the exponentials one finds the usual Wick expansion of the Green
functions which is embodied in the
\emph on
Feynman rules
\emph default
:
\end_layout
\begin_layout Enumerate
To find a contribution to
\begin_inset Formula $G^{\left(n\right)}\left(x_{1},\cdots,x_{n}\right)$
\end_inset
draw
\begin_inset Formula $n$
\end_inset
points (
\begin_inset Quotes eld
\end_inset
external legs
\begin_inset Quotes erd
\end_inset
), associated to
\begin_inset Formula $x_{1}$
\end_inset
through
\begin_inset Formula $x_{n}$
\end_inset
, and
\end_layout
\begin_layout Enumerate
Draw a
\begin_inset Formula $k$
\end_inset
point vertex for every interaction
\begin_inset Formula $\frac{1}{k!}g_{k}\phi^{k}\subset V_{\mathrm{int}}$
\end_inset
appearing in the expansion of the exponential.
Each such vertex is associated with a factor
\begin_inset Formula $\left(-\frac{i}{\hbar}\right)g_{k}$
\end_inset
and an integral
\begin_inset Formula $\int_{x}$
\end_inset
over position of the vertex, and
\end_layout
\begin_layout Enumerate
Connect external legs and vertices with lines (
\begin_inset Quotes eld
\end_inset
propagators
\begin_inset Quotes erd
\end_inset
) in all possible ways such that: all external legs are attached to one
\begin_inset Quotes eld
\end_inset
line end,
\begin_inset Quotes erd
\end_inset
each
\begin_inset Formula $k$
\end_inset
point vertex is attached to
\begin_inset Formula $k$
\end_inset
line ends (nothing forbids attaching both ends of a line to the same vertex)
and no line ends except on a vertex or external leg.
Each line is associated with a factor
\begin_inset Formula $i\hbar\Delta_{0}\left(x,y\right)$
\end_inset
where
\begin_inset Formula $x$
\end_inset
and
\begin_inset Formula $y$
\end_inset
are the position of the two ends.
\end_layout
\begin_layout Enumerate
Also, associate to the diagram an overall symmetry factor
\begin_inset Formula $1/\left|\Gamma\right|$
\end_inset
, where
\begin_inset Formula $\left|\Gamma\right|$
\end_inset
is the order of the automorphism group of the diagram under interchanges
of lines and vertices.
\end_layout
\begin_layout Standard
Using these rules it is possible to compute
\begin_inset Formula $G^{\left(n\right)}$
\end_inset
systematically, order by order, in a perturbation expansion in the coupling
constants in
\begin_inset Formula $V_{\mathrm{int}}$
\end_inset
.
From
\begin_inset Formula $G^{\left(n\right)}$
\end_inset
, one can also recover
\begin_inset Formula $Z\left[J\right]$
\end_inset
:
\begin_inset Formula
\begin{equation}
Z\left[J\right]=\sum_{n=0}^{\infty}\frac{1}{n!}\left(\frac{i}{\hbar}\right)^{n}\int_{x_{1}\cdots x_{n}}J\left(x_{1}\right)\cdots J\left(x_{n}\right)G^{\left(n\right)}\left(x_{1},\cdots,x_{n}\right).
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The diagram expansion of
\begin_inset Formula $G^{\left(n\right)}$
\end_inset
contains many disconnected diagrams, i.e.
diagrams with more than one connected component.
This leads to an undesirable duplication of computation (since a disconnected
contribution to
\begin_inset Formula $G^{\left(n\right)}$
\end_inset
is also a contribution to various
\begin_inset Formula $G^{\left(k\right)}$
\end_inset
with
\begin_inset Formula $k<n$
\end_inset
) and non-extensivity of
\begin_inset Formula $G^{\left(n\right)}$
\end_inset
since a disconnected contribution factorises
\begin_inset Formula $\sim G^{\left(k\right)}\left(x_{1},\cdots,x_{k}\right)G^{\left(n-k\right)}\left(x_{n-k},\cdots,x_{n}\right)$
\end_inset
and so is independent of the relative separation between points in the
two clusters
\begin_inset Formula $x_{1},\cdots,x_{k}$
\end_inset
and
\begin_inset Formula $x_{n-k},\cdots,x_{n}$
\end_inset
.
Clearly the connected components are the basic objects which one would
prefer to compute.
Fortunately, though the combinatorics will not be proved here
\begin_inset Foot
status open
\begin_layout Plain Layout
It can be found in many quantum field theory books, see e.g.
\begin_inset CommandInset citation
LatexCommand citep
key "Srednicki2007"
\end_inset
.
\end_layout
\end_inset
, the connected diagrams obey the simple relationship given schematically
as
\begin_inset Formula
\begin{equation}
\text{all diagrams}=\exp\left(\text{connected diagrams}\right).
\end{equation}
\end_inset
This strongly motivates the introduction of the
\emph on
connected generating functional
\emph default
\begin_inset Formula
\begin{equation}
W\left[J\right]=-i\hbar\ln Z\left[J\right].
\end{equation}
\end_inset
The diagram expansion for
\begin_inset Formula $W\left[J\right]$
\end_inset
has the same Feynman rules as above, except that one only includes connected
diagrams and, traditionally, the extra overall factor
\begin_inset Formula $-i\hbar$
\end_inset
.
To lowest order
\begin_inset Formula
\begin{equation}
W\left[J\right]=W\left[0\right]+\int_{x}J\left(x\right)\left\langle \phi\left(x\right)\right\rangle -\frac{1}{2}\int_{xy}J\left(x\right)\Delta_{0}\left(x,y\right)J\left(y\right)+\mathcal{O}\left(V_{\mathrm{int}}\right).
\end{equation}
\end_inset
Note that
\begin_inset Formula $\left\langle \phi\left(x\right)\right\rangle \sim\mathcal{O}\left(V_{\mathrm{int}}\right)$
\end_inset
if there is no linear term in
\begin_inset Formula $\mathcal{L}\left(\phi\right)$
\end_inset
, which will be assumed below.
As usual, for most physical purposes the overall normalisation
\begin_inset Formula $W\left[0\right]$
\end_inset
is unimportant.
The connected correlation functions are
\begin_inset Formula
\begin{equation}
G_{C}^{\left(n\right)}\left(x_{1},\cdots,x_{n}\right)=\left.\left(-i\hbar\frac{\delta}{\delta J\left(x_{1}\right)}\right)\cdots\left(-i\hbar\frac{\delta}{\delta J\left(x_{n}\right)}\right)W\left[J\right]\right|_{J=0},
\end{equation}
\end_inset
so that, at leading order in interactions,
\begin_inset Formula
\begin{eqnarray}
G_{C}^{\left(2\right)}\left(x,y\right) & = & \hbar^{2}\Delta_{0}\left(x,y\right)+\mathcal{O}\left(V_{\mathrm{int}}\right),\\
G_{C}^{\left(1\right)}\left(x\right) & = & G_{C}^{\left(n\geq3\right)}\left(x_{1},\cdots,x_{n}\right)=0+\mathcal{O}\left(V_{\mathrm{int}}\right).
\end{eqnarray}
\end_inset
From these
\begin_inset Formula $W\left[J\right]$
\end_inset
can be recovered if need be:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
W\left[J\right]=\sum_{n=0}^{\infty}\frac{1}{n!}\left(\frac{i}{\hbar}\right)^{n}\int_{x_{1}\cdots x_{n}}J\left(x_{1}\right)\cdots J\left(x_{n}\right)G_{C}^{\left(n\right)}\left(x_{1},\cdots,x_{n}\right).
\end{equation}
\end_inset
It is also convenient to define
\begin_inset Formula
\begin{equation}
\Delta\left(x,y\right)=\hbar^{-2}G_{C}^{\left(2\right)}\left(x,y\right),
\end{equation}
\end_inset
i.e.
simply stripping off the factor of
\begin_inset Formula $\hbar^{2}$
\end_inset
.
It is useful for later to note that, in terms of the
\begin_inset Formula $G^{\left(n\right)}$
\end_inset
,
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
G_{C}^{\left(2\right)}\left(x,y\right)=-i\hbar\left[G^{\left(2\right)}\left(x,y\right)-G^{\left(1\right)}\left(x\right)G^{\left(1\right)}\left(y\right)\right],
\end{equation}
\end_inset
thus
\begin_inset Formula
\begin{equation}
G^{\left(2\right)}\left(x,y\right)=i\hbar\Delta\left(x,y\right)+\left\langle \phi\left(x\right)\right\rangle \left\langle \phi\left(y\right)\right\rangle .
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
There is a great deal of duplication of computation, even in the connected
correlation functions.
This can be seen by the example of the two point function of a theory with
\begin_inset Formula $V_{\mathrm{int}}\left(\phi\right)=\frac{1}{4!}\lambda\phi^{4}$
\end_inset
expanded to third order in the interaction:
\begin_inset ERT
status collapsed
\begin_layout Plain Layout
\backslash
begin{fmffile}{perturbation-theory-propagator}
\end_layout
\begin_layout Plain Layout
\backslash
begin{align}
\end_layout
\begin_layout Plain Layout
i
\backslash
hbar
\backslash
Delta
\backslash
left(x,y
\backslash
right)&
\end_layout
\begin_layout Plain Layout
=