This repository was archived by the owner on May 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap4.lyx
6939 lines (5331 loc) · 162 KB
/
chap4.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass jcuthesis
\options sort&compress
\use_default_options true
\master thesis_main.lyx
\begin_modules
theorems-ams
theorems-ams-extended
theorems-sec
\end_modules
\maintain_unincluded_children false
\language australian
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type numerical
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Chapter
Symmetry Improvement of
\begin_inset Formula $n$
\end_inset
PIEA through Lagrange Multipliers
\begin_inset CommandInset label
LatexCommand label
name "chap:chap4"
\end_inset
\end_layout
\begin_layout Section
Synopsis
\end_layout
\begin_layout Standard
Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap2"
\end_inset
introduced
\begin_inset Formula $n$
\end_inset
PIEAs as powerful tools for computations in QFT, particularly used for their
ability to handle non-equilibrium situations through time contour methods.
The previous chapter discussed global symmetries and Ward identities in
\begin_inset Formula $n$
\end_inset
PIEA, showing that the solutions of truncated
\begin_inset Formula $n$
\end_inset
PI equations of motion do not obey the 1PI Ward identities.
Several studies have attempted to find a remedy for this problem (see,
e.g.,
\begin_inset CommandInset citation
LatexCommand citep
key "Pilaftsis2013"
\end_inset
and references therein).
The last chapter discussed the external propagator method, which has been
frequently used in the literature and does yield massless Goldstone bosons.
However, the external propagator is not the propagator used in loop graphs,
so the loop corrections still contain massive Goldstone bosons leading
to incorrect thresholds, decay rates and violations of unitarity.
In order to avoid these problems a manifestly self-consistent scheme must
be used.
One such scheme is the large
\begin_inset Formula $N$
\end_inset
approximation, which was also briefly reviewed.
The Goldstone theorem and second order phase transition do hold to leading
order in the large
\begin_inset Formula $N$
\end_inset
approximation, but these attractive features are lost at higher orders.
Another approach which is not discussed in detail here is to abandon the
\begin_inset Formula $n$
\end_inset
PIEA formalism entirely, using instead the Schwinger-Dyson equations.
The Schwinger-Dyson equations require a closure ansatz which can be chosen
to respect appropriate Ward identities.
However, this choice still involves some degree of arbitrariness and self-consi
stency is not guaranteed.
\end_layout
\begin_layout Standard
This chapter discusses the symmetry improvement method introduced by Pilaftsis
and Teresi to circumvent these difficulties
\begin_inset CommandInset citation
LatexCommand citep
key "Pilaftsis2013"
\end_inset
for the 2PIEA.
The idea is simply to impose the desired Ward identities directly on the
free correlation functions.
This is consistently implemented by using Lagrange multipliers.
The remarkable point is that the resulting equations of motion can be put
into a form that completely eliminates the Lagrange multiplier field.
They achieve this by taking a limit in which the Lagrange multiplier vanishes
from all but one of the equations of motion, and this remaining equation
of motion is replaced with the constraint to obtain a closed system.
Here the symmetry improved 2PIEA (SI-2PIEA) is reviewed and extended to
general
\begin_inset Formula $\mathrm{O}\left(N\right)$
\end_inset
theories.
An ambiguity of the constraint scheme is pointed out which was not recognised
in the original literature.
This ambiguity has no influence on the equilibrium results of this chapter,
but is relevant to the discussion of Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap6"
\end_inset
.
Following that the method is generalised to the 3PIEA (reporting on work
published by the author
\begin_inset CommandInset citation
LatexCommand citep
key "Brown2015a"
\end_inset
).
The generalisation is non-trivial, requiring a careful consideration of
the variational procedure leading to an infinity of possible schemes.
A new principle is introduced to choose between the schemes and is called
the
\emph on
d'Alembert formalism
\emph default
by analogy to the constrained variational problem in mechanics.
\end_layout
\begin_layout Standard
The motivation for extending symmetry improvement to the 3PIEA is threefold.
First, the 3PIEA is known to be the required starting point to obtain a
self-consistent non-equilibrium kinetic theory of gauge theories.
The accurate calculation of transport coefficients and thermalisation times
in gauge theories requires the use of
\begin_inset Formula $n$
\end_inset
PIEA with
\begin_inset Formula $n\geq3$
\end_inset
(see, e.g.
\begin_inset CommandInset citation
LatexCommand citep
key "Carrington2009,Smolic2012,Berges2004"
\end_inset
and references therein for discussion).
The fundamental reason for this is that the 3PIEA includes medium induced
effects on the three-point vertex at leading order.
The 2PIEA in gauge theory contains a dressed propagator but not a dressed
vertex, leading not only to an inconsistency of the resulting kinetic equation
but also to a spurious gauge dependence analogous to the failure of global
symmetries in truncations as discussed in chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap3"
\end_inset
.
Thus this work is a stepping stone towards a fully self-consistent, non-perturb
ative and manifestly gauge invariant treatment of out of equilibrium gauge
theories.
\end_layout
\begin_layout Standard
Second,
\begin_inset Formula $n$
\end_inset
PIEAs allow one to accurately describe the initial value problem with 1-
to
\begin_inset Formula $n$
\end_inset
-point connected correlation functions in the initial state.
For example, the 2PIEA allows one to solve the initial value problem for
initial states with a Gaussian density matrix.
However, the physical applications one has in mind typically start from
a near thermal equilibrium state which is not well approximated by a Gaussian
density matrix.
This leads to problems with renormalisation, unphysical transient responses
and thermalisation to the wrong temperature
\begin_inset CommandInset citation
LatexCommand citep
key "Garny2009"
\end_inset
.
This is addressed in
\begin_inset CommandInset citation
LatexCommand citep
key "Garny2009,VanLeeuwen2012,Stefanucci2013"
\end_inset
by the addition of an infinite set of non-local vertices which only have
support at the initial time.
Going to
\begin_inset Formula $n>2$
\end_inset
allows one to better describe the initial state, thereby reducing the need
for additional non-local vertices.
\end_layout
\begin_layout Standard
Lastly, the infinite hierarchy of
\begin_inset Formula $n$
\end_inset
PIEA is the natural home for the 2PIEA and provides the clearest route for
systematic improvements over existing treatments.
Thus investigating symmetry improvement of 3PIEA is a well motived step
in the development of non-perturbative QFT.
\end_layout
\begin_layout Section
Symmetry Improvement of the 2PIEA
\begin_inset ERT
status open
\begin_layout Plain Layout
}{
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "sec:SI-2PIEA"
\end_inset
\end_layout
\begin_layout Standard
The essence of symmetry improvement is to impose the WIs derived for the
1PI correlation functions on the
\begin_inset Formula $n$
\end_inset
PI correlation functions.
Effectively, one changes
\begin_inset Formula
\begin{equation}
\mathcal{W}_{a_{1}\cdots a_{j}}^{A}\left(\Delta_{\text{1PI}},V_{\text{1PI}},\cdots,V_{\text{1PI}}^{\left(n\right)}\right)\to\mathcal{W}_{a_{1}\cdots a_{j}}^{A}\left(\Delta_{n\text{PI}},V_{n\text{PI}},\cdots,V_{n\text{PI}}^{\left(n\right)}\right),
\end{equation}
\end_inset
where
\begin_inset Formula $\mathcal{W}_{a_{1}\cdots a_{j}}^{A}$
\end_inset
for
\begin_inset Formula $j=1,\cdots,n-1$
\end_inset
are the WIs and the arguments change but not the functional form.
Note that higher order WIs cannot be enforced on an
\begin_inset Formula $n$
\end_inset
PIEA since only the 1- through
\begin_inset Formula $n$
\end_inset
-point functions are free.
Thus, in the SI-2PIEA a single constraint is enforced, namely
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:1PI-Delta-WI"
\end_inset
, which recall is
\begin_inset Formula
\begin{equation}
0=\mathcal{W}_{c}^{A}=\Delta_{ca}^{-1}T_{ab}^{A}\varphi_{b}-J_{a}T_{ac}^{A},
\end{equation}
\end_inset
where
\begin_inset Formula $\Delta$
\end_inset
is thought of as the 2PI function.
Only the case
\begin_inset Formula $J_{a}=0$
\end_inset
will be considered here.
\begin_inset CommandInset citation
LatexCommand citet
key "Pilaftsis2013"
\end_inset
considered the case of a translationally invariant
\begin_inset Formula $J_{a}\neq0$
\end_inset
to define a symmetry improved effective potential.
The situation with a general
\begin_inset Formula $J_{a}\neq0$
\end_inset
is discussed in Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap6"
\end_inset
.
\end_layout
\begin_layout Standard
Symmetry improvement imposes
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:1PI-Delta-WI"
\end_inset
as a constraint on the allowable values of
\begin_inset Formula $\varphi$
\end_inset
and
\begin_inset Formula $\Delta$
\end_inset
in the 2PIEA.
This proceeds through the introduction of Lagrange multiplier fields
\begin_inset Formula $\ell_{A}^{d}\left(x\right)$
\end_inset
and a shift of the action
\begin_inset Formula $\Gamma\to\Gamma-\mathcal{C}$
\end_inset
where
\begin_inset Formula $\mathcal{C}\sim\ell\mathcal{W}$
\end_inset
is the constraint.
Note however that Pilaftsis and Teresi introduced symmetry improvement
non-covariantly, leading to two possible covariant symmetry improvement
schemes that reduce to theirs in equilibrium.
The first is to take
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\mathcal{C}=\frac{i}{2}\ell_{A}^{c}\mathcal{W}_{c}^{A}.\label{eq:simple-constraint}
\end{equation}
\end_inset
The second follows the author's previous paper
\begin_inset CommandInset citation
LatexCommand citep
key "Brown2015a"
\end_inset
by including a transverse projector
\begin_inset Formula $P_{ab}^{\perp}\left(x\right)=\delta_{ab}-\varphi_{a}\left(x\right)\varphi_{b}\left(x\right)/\varphi^{2}\left(x\right)$
\end_inset
:
\begin_inset Formula
\begin{equation}
\mathcal{C}'=\frac{i}{2}\ell_{A}^{c}P_{cd}^{\perp}\mathcal{W}_{d}^{A},\label{eq:projected-constraint}
\end{equation}
\end_inset
to ensure that only Goldstone modes are involved in the constraint.
The choice between
\begin_inset Formula $\mathcal{C}$
\end_inset
and
\begin_inset Formula $\mathcal{C}'$
\end_inset
turns out to make no difference in equilibrium.
However, the two constraints lead to different schemes beyond equilibrium,
both of which are pathological as discussed in the author's paper
\begin_inset CommandInset citation
LatexCommand citep
key "Brown_2016"
\end_inset
and in Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap6"
\end_inset
.
For now the simple constraint
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:simple-constraint"
\end_inset
is taken.
\end_layout
\begin_layout Standard
The equations of motion following from the symmetry improved effective action
are
\begin_inset Formula
\begin{align}
\mathcal{W}_{c}^{A} & =0,\\
\frac{\delta\Gamma}{\delta\varphi_{d}\left(z\right)} & =\frac{i}{2}\int_{x}\ell_{A}^{c}\left(x\right)\Delta_{ca}^{-1}\left(x,z\right)T_{ad}^{A}-J_{d}\left(z\right)-\int_{w}K_{de}\left(z,w\right)\varphi_{e}\left(w\right),\label{eq:si-eom-vev}\\
\frac{\delta\Gamma}{\delta\Delta_{de}\left(z,w\right)} & =\frac{i}{2}\int_{x}\ell_{A}^{c}\left(x\right)\int_{y}\frac{\delta\Delta_{ca}^{-1}\left(x,y\right)}{\delta\Delta_{de}\left(z,w\right)}T_{ab}^{A}\varphi_{b}\left(y\right)-\frac{1}{2}i\hbar K_{de}\left(z,w\right),
\end{align}
\end_inset
where the last equation simplifies to
\begin_inset Formula
\begin{equation}
\frac{\delta\Gamma}{\delta\Delta_{de}\left(z,w\right)}=-\frac{i}{2}\int_{x}\ell_{A}^{c}\left(x\right)\Delta_{cd}^{-1}\left(x,z\right)\int_{y}\Delta_{ea}^{-1}\left(w,y\right)T_{ab}^{A}\varphi_{b}\left(y\right)-\frac{1}{2}i\hbar K_{de}\left(z,w\right),\label{eq:si-eom-delta}
\end{equation}
\end_inset
on using the identity
\begin_inset Formula $\delta\Delta_{ca}^{-1}/\delta\Delta_{de}=-\Delta_{cd}^{-1}\Delta_{ea}^{-1}$
\end_inset
.
In the present discussion only the equilibrium case with
\begin_inset Formula $J=K=0$
\end_inset
is relevant (this is reviewing
\begin_inset CommandInset citation
LatexCommand citep
key "Pilaftsis2013,Brown2015a"
\end_inset
, the more general case is discussed in
\begin_inset CommandInset citation
LatexCommand citep
key "Brown_2016"
\end_inset
and Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap6"
\end_inset
).
The only non-trivial WIs are
\begin_inset Formula $\mathcal{W}_{c}^{gN}=-ivm_{G}^{2}P_{cg}^{\perp}$
\end_inset
, so that the constraint enforces
\begin_inset Formula $vm_{G}^{2}=0$
\end_inset
, i.e.
the Goldstone mass vanishes if
\begin_inset Formula $v\neq0$
\end_inset
as expected.
Using homogeneity
\begin_inset Formula $\ell_{A}^{c}\left(x\right)=\ell_{A}^{c}$
\end_inset
, and the SSB ansatz
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:SSB-ansatz-Delta"
\end_inset
the other equations of motion become
\begin_inset Formula
\begin{align}
\frac{\partial\Gamma/\mathrm{V}T}{\partial v} & =\ell_{cN}^{c}m_{G}^{2},\\
\frac{\delta\Gamma}{\delta\Delta_{G}\left(z,w\right)} & =\ell_{cN}^{c}vm_{G}^{4},\\
\frac{\delta\Gamma}{\delta\Delta_{H}\left(z,w\right)} & =0,\label{eq:SI-2PIEA-H-eom-general}
\end{align}
\end_inset
where
\begin_inset Formula $\mathrm{V}T$
\end_inset
is the volume of spacetime
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
Recall that
\begin_inset Formula $\left(\delta/\delta\varphi\left(x\right)\right)\int_{y}\varphi\left(y\right)J\left(y\right)\equiv J\left(x\right)$
\end_inset
, however, for a translation invariant
\begin_inset Formula $\varphi\left(x\right)=v$
\end_inset
and
\begin_inset Formula $J\left(x\right)=J$
\end_inset
,
\begin_inset Formula $\partial_{v}\int_{y}\varphi\left(x\right)J\left(x\right)=\partial_{v}\int_{x}vJ=\mathrm{V}TJ$
\end_inset
so that
\begin_inset Formula $\delta/\delta\varphi=\left(\mathrm{V}T\right)^{-1}\partial_{v}$
\end_inset
for constant fields.
\end_layout
\end_inset
.
The symmetry improvement constraint is a singular one: one must require
\begin_inset Formula $\ell\to\infty$
\end_inset
as
\begin_inset Formula $v\int\Delta_{G}^{-1}\to0$
\end_inset
.
The reason for this is that
\begin_inset Formula $m_{G}^{2}\to0$
\end_inset
so the right hand sides vanish unless
\begin_inset Formula $\ell_{cN}^{c}\to\infty$
\end_inset
.
Applying the constraint with
\begin_inset Formula $v\neq0$
\end_inset
directly in the equations of motion would give zero right hand sides, reducing
to the standard 2PI formalism.
This is valid in the full theory because the Ward identity is satisfied.
However, this is impossible in the case where the 2PI effective action
is truncated at finite loop order because the actual Ward identity obeyed
by the 2PIEA is
\emph on
not
\emph default
\begin_inset Formula $\mathcal{W}_{c}^{A}$
\end_inset
as discussed in Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap3"
\end_inset
.
\end_layout
\begin_layout Standard
The divergence is regulated by setting
\begin_inset Formula $vm_{G}^{2}=\eta m^{3}$
\end_inset
and taking the limit
\begin_inset Formula $\eta\to0$
\end_inset
such that
\begin_inset Formula $\eta\ell_{cN}^{c}/v=\ell_{0}$
\end_inset
is a constant.
This gives
\begin_inset Formula
\begin{align}
\frac{\partial\Gamma/\mathrm{V}T}{\partial v} & =\ell_{0}m^{3},\label{eq:SI-2PIEA-v-eom-general}\\
\frac{\delta\Gamma}{\delta\Delta_{G}\left(z,w\right)} & =0.\label{eq:SI-2PIEA-G-eom-general}
\end{align}
\end_inset
(Note that one can consistently set
\begin_inset Formula
\begin{equation}
\ell_{bN}^{a}=-\ell_{Nb}^{a}=P_{ab}^{\perp}\left(\frac{1}{N-1}\ell_{cN}^{c}\right),\label{eq:lagrange-multipliers}
\end{equation}
\end_inset
and all other components of
\begin_inset Formula $\ell_{A}^{c}$
\end_inset
to zero.) Thus the propagator equations of motion are unmodified and the
vev equation is modified by the presence of a homogeneous force that acts
to push
\begin_inset Formula $v$
\end_inset
away from the minimum of the effective potential to the point where
\begin_inset Formula $m_{G}^{2}=0$
\end_inset
.
In practice, in the symmetry broken phase, one simply discards the vev
equation of motion and solves the propagator ones in conjunction with the
Ward identity, which suffices to give a closed system.
In the symmetric phase
\begin_inset Formula $v=0$
\end_inset
and the Ward identity is trivial, but
\begin_inset Formula $\Gamma$
\end_inset
also does not depend linearly on
\begin_inset Formula $v$
\end_inset
, hence one can take the previous equations of motion with
\begin_inset Formula $\ell_{0}=0$
\end_inset
.
Note that one can keep a non-zero
\begin_inset Formula $m_{G}^{2}$
\end_inset
in the intermediate stages of the computation to serve as an infrared regulator.
\end_layout
\begin_layout Standard
To recap the procedure: first define a symmetry improved effective action
using Lagrange multipliers and compute the equations of motion.
Second, note that the equations of motion are singular when the constraints
are applied.
Third, regulate the singularity by slightly violating the constraint.
Fourth, pass to a suitable limit where violation of the constraint tends
to zero while requiring the limiting procedure to be universal in the sense
that no additional data (arbitrary forms of the Lagrange multiplier fields)
need be introduced into the theory.
\end_layout
\begin_layout Section
Renormalisation and solution of the SI-2PI Hartree-Fock gap equations
\begin_inset ERT
status open
\begin_layout Plain Layout
}{
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "sec:Renormalisation-and-solution-SI-2PIEA-HF"
\end_inset
\end_layout
\begin_layout Standard
The renormalisation of the SI-2PIEA in the Hartree-Fock approximation follows
the same procedure as in section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Renormalisation-and-solution-2PI-HF"
\end_inset
with minor alterations.
The gap equations
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:ren-2PI-HF-G-eom"
\end_inset
-
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:fin-2PI-HF-H-eom"
\end_inset
are the same, as are the finite versions
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:fin-2PI-HF-G-eom"
\end_inset
-
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:fin-2PI-HF-H-eom"
\end_inset
, reproduced here:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
m_{G}^{2} & =m^{2}+\frac{\lambda}{6}v^{2}+\frac{\hbar\lambda}{6}\left(N+1\right)\mathcal{T}_{G}^{\mathrm{fin}}+\frac{\hbar\lambda}{6}\mathcal{T}_{H}^{\mathrm{fin}}+\mathcal{O}\left(\lambda^{2}\right),\label{eq:fin-SI-2PI-HF-G-eom}\\
m_{H}^{2} & =m^{2}+\frac{\lambda}{2}v^{2}+\frac{\hbar\lambda}{6}\left(N-1\right)\mathcal{T}_{G}^{\mathrm{fin}}+\frac{\hbar\lambda}{2}\mathcal{T}_{H}^{\mathrm{fin}}+\mathcal{O}\left(\lambda^{2}\right),\label{eq:fin-SI-2PI-HF-H-eom}
\end{align}
\end_inset
however the vev equation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:fin-2PI-HF-vev-eom"
\end_inset
is replaced by Goldstone's theorem
\begin_inset Formula
\begin{equation}
0=vm_{G}^{2},\label{eq:fin-SI-2PI-HF-Goldstone-thm}
\end{equation}
\end_inset
which does not require renormalisation (more precisely, the WI is multiplicative
ly renormalised, however since
\begin_inset Formula $\mathcal{W}_{c}^{A}=0$
\end_inset
an overall factor makes no difference).
The counter-terms
\begin_inset Formula $\delta m_{0}^{2}$
\end_inset
and
\begin_inset Formula $\delta\lambda_{0}$
\end_inset
do not enter into the renormalisation of the equations of motion and
\begin_inset Formula $Z_{\Delta}$
\end_inset
is again redundant.
Altogether there are six remaining constants
\begin_inset Formula $Z$
\end_inset
,
\begin_inset Formula $\delta m_{1}^{2}$
\end_inset
, and
\begin_inset Formula $\delta\lambda_{1,2}^{A,B}$
\end_inset
which are constrained by eight independent equations.
That there is a solution is a non-trivial check on the calculations and
one find (for details refer to the
\noun on
Mathematica
\begin_inset CommandInset citation
LatexCommand citep
key "mathematica"
\end_inset
\noun default
notebook in Appendix
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:Appendix-Renormalisation-Details"
\end_inset
)
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
Z=Z_{\Delta} & =1,\\
\delta m_{1}^{2} & =-\frac{\hbar\lambda}{6}\left(N+2\right)\left(c_{0}\Lambda^{2}+c_{1}m^{2}\ln\left(\frac{\Lambda^{2}}{\mu^{2}}\right)\right)\frac{\delta\lambda_{1}^{A}+\lambda}{\delta\lambda_{1}^{B}+\lambda},\\
\delta\lambda_{1}^{A}=\delta\lambda_{2}^{A} & =\left(1+\frac{3\left(N+2\right)}{6+c_{1}\left(N+2\right)\lambda\hbar\ln\left(\frac{\Lambda^{2}}{\mu^{2}}\right)}\right)\delta\lambda_{1}^{B},\\
\delta\lambda_{1}^{B}=\delta\lambda_{2}^{B} & =\left(-1+\frac{3}{3+c_{1}\lambda\hbar\ln\left(\frac{\Lambda^{2}}{\mu^{2}}\right)}\right)\lambda,
\end{align}
\end_inset
which is actually identical to the expressions for the counter-terms in
the unimproved 2PIEA case.
This should accord with intuition: symmetry improvement is an infrared
modification of the theory which does not alter the ultraviolet divergence
structure at all.
However, such a result is not automatically assured in a self-consistent
approximation scheme such as
\begin_inset Formula $n$
\end_inset
PIEA, since the non-linearity of the equations of motion results in a coupling
of scales.
Furthermore, section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:SI-3PIEA"
\end_inset
shows that the SI-3PIEA truncated to two loops is
\emph on
not
\emph default
equivalent to the SI-2PIEA.
Instead the Higgs propagator equation of motion is modified as are the
counter-terms.
Full self-consistency of the theory is then lost with various physical
effects that will be discussed.
\end_layout
\begin_layout Standard
Remarkably there is an exact analytical solution for the SI-2PI HF approximation.
Subtracting
\begin_inset Formula $3m_{G}^{2}$
\end_inset
from the
\begin_inset Formula $m_{H}^{2}$
\end_inset
equation to cancel the
\begin_inset Formula $\lambda v^{2}/2$
\end_inset
and
\begin_inset Formula $\hbar\lambda\mathcal{T}_{H}^{\mathrm{fin}}/2$
\end_inset
terms, and using that
\begin_inset Formula $m_{G}^{2}=0$
\end_inset
in the symmetry breaking regime, one finds
\begin_inset Formula
\begin{equation}
m_{H}^{2}=\bar{m}_{H}^{2}-\frac{\hbar\lambda}{3}\left(N+2\right)\mathcal{T}_{G}^{\mathrm{fin}}+\mathcal{O}\left(\lambda^{2}\right),
\end{equation}
\end_inset
where
\begin_inset Formula $\mathcal{T}_{G}^{\mathrm{fin}}=T^{2}/12$
\end_inset
since
\begin_inset Formula $m_{G}^{2}=0$
\end_inset
.
The critical temperature occurs when
\begin_inset Formula $m_{H}^{2}=0$
\end_inset
, giving
\begin_inset Formula
\begin{equation}
T_{\star}=\sqrt{\frac{12\bar{v}^{2}}{\hbar\left(N+2\right)}}+\mathcal{O}\left(\lambda^{2}\right),
\end{equation}
\end_inset
which is the same as in the unimproved case