This repository has been archived by the owner on May 5, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap5.lyx
4068 lines (3076 loc) · 103 KB
/
chap5.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass jcuthesis
\options sort&compress
\use_default_options true
\master thesis_main.lyx
\begin_modules
theorems-ams
theorems-ams-extended
theorems-sec
\end_modules
\maintain_unincluded_children false
\language australian
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type numerical
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Chapter
Soft Symmetry Improvement
\begin_inset CommandInset label
LatexCommand label
name "chap:chap5"
\end_inset
\end_layout
\begin_layout Section
Synopsis
\begin_inset CommandInset label
LatexCommand label
name "sec:ch5-Synopsis"
\end_inset
\end_layout
\begin_layout Standard
Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap4"
\end_inset
investigated the symmetry improvement formalism for
\begin_inset Formula $n$
\end_inset
PIEA, an attempt to improve the symmetry properties of solutions of non-perturba
tive equations of motion by directly imposing the appropriate Ward identities
as constraints.
As discussed there are some successes attributable to this method.
However, there are also pathologies.
In particular: truncations of SI-
\begin_inset Formula $n$
\end_inset
PIEA may not admit solutions, too low order truncations of SI-
\begin_inset Formula $n$
\end_inset
PIEA (
\begin_inset Formula $\mathcal{O}\left(\hbar^{l}\right)$
\end_inset
with
\begin_inset Formula $l<n$
\end_inset
) are not fully self-consistent due to over-imposed constraints, and, as
will be shown in Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap6"
\end_inset
, solutions of SI-
\begin_inset Formula $n$
\end_inset
PI equations of motion likely do not exist beyond equilibrium (certainly
not in the linear response approximation) because violations of
\begin_inset Formula $>n$
\end_inset
th order WIs feed back into the solutions for the
\begin_inset Formula $\leq n$
\end_inset
th order correlation functions.
All of this suggests that symmetry improvement
\emph on
over-imposes
\emph default
the WIs.
This motivates the investigation of methods which only enforce WIs approximatel
y rather than exactly.
The idea is that the extra freedom may allow solutions to exist while violation
s of the WIs may be acceptably small phenomenologically depending on the
application one has in mind.
This chapter investigates a novel method called
\emph on
soft symmetry improvement
\emph default
(SSI) with this aim.
\end_layout
\begin_layout Standard
The idea of soft symmetry improvement is to relax the WI constraint of the
symmetry improvement method.
Instead, the WI is enforced
\emph on
softly
\emph default
in the sense of least squares: a solution is found which minimises at the
same time violations of the WI and the violation of the unimproved equations
of motion.
The relative cost of WI violations is controlled by a new
\emph on
stiffness
\emph default
parameter
\begin_inset Formula $\xi$
\end_inset
, such that
\begin_inset Formula $\xi\to0\left(\infty\right)$
\end_inset
reduces to the SI(unimproved)-2PIEA respectively.
The motivating hope behind the investigation is that for some range of
finite values of
\begin_inset Formula $\xi$
\end_inset
the extra freedom to allow small violations of the WIs leads to a formalism
which is phenomenologically useful in the sense that physical quantities
can be computed to some desired accuracy fixed by the particular application
in mind.
It is shown in this chapter that this program cannot be fully realised,
at least in the infinite volume / low temperature limit, due to the infrared
sensitivity of the SSI-2PIEA: the limit is a subtle one and the only consistent
limiting procedures reduce to either the unimproved or SI-2PIEA, or to
a novel limit which has pathological properties of its own.
\end_layout
\begin_layout Standard
This chapter formulates the SSI-2PIEA, then renormalises and solves the
resulting equations of motion in the Hartree-Fock approximation in thermal
equilibrium.
The infinite volume / low temperature limit (
\begin_inset Formula $\mathrm{V}\beta\to\infty$
\end_inset
) is examined carefully and three consistent limiting procedures are found.
Two reduce to previous work (the unimproved and SI-2PIEAs respectively)
but the third is new.
The properties of this new limit are examined in equilibrium at finite
and zero temperature.
All of this work is new and forms the basis of a paper by the author
\begin_inset CommandInset citation
LatexCommand citep
key "Brown2016"
\end_inset
.
\end_layout
\begin_layout Section
Soft Symmetry Improvement of 2PIEA
\begin_inset CommandInset label
LatexCommand label
name "sec:ch5-SSI-2PIEA"
\end_inset
\end_layout
\begin_layout Standard
The simplest way to arrive at the definition of the SSI-2PIEA is to start
with the standard 2PIEA
\begin_inset Formula $\Gamma\left[\varphi,\Delta\right]$
\end_inset
(suppressing indices and spacetime arguments where these just clutter)
and the trivial identity
\begin_inset Formula
\begin{equation}
\exp\left(\frac{i}{\hbar}\Gamma\left[\varphi,\Delta\right]\right)=\int\mathcal{D}\phi\delta\left(\phi-\varphi\right)\exp\left(\frac{i}{\hbar}\Gamma\left[\phi,\Delta\right]\right).
\end{equation}
\end_inset
The usual symmetry improved action
\begin_inset Formula $\Gamma^{\mathrm{SI}}\left[\varphi,\Delta\right]$
\end_inset
is then defined by inserting a delta function
\begin_inset Formula
\begin{equation}
\exp\left(\frac{i}{\hbar}\Gamma^{\mathrm{SI}}\left[\varphi,\Delta\right]\right)=N\int\mathcal{D}\phi\delta\left(\phi-\varphi\right)\exp\left(\frac{i}{\hbar}\Gamma\left[\phi,\Delta\right]\right)\delta\left(\mathcal{W}\left[\phi,\Delta\right]\right)
\end{equation}
\end_inset
where
\begin_inset Formula $\mathcal{W}\left[\phi,\Delta\right]=0$
\end_inset
is the Ward identity and the normalisation factor
\begin_inset Formula $N$
\end_inset
is chosen so that
\begin_inset Formula $\Gamma^{\mathrm{SI}}\left[\varphi,\Delta\right]$
\end_inset
numerically equals
\begin_inset Formula $\Gamma\left[\varphi,\Delta\right]$
\end_inset
when the arguments satisfy the Ward identity
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
Formally
\begin_inset Formula $N=\left[\delta\left(0\right)\right]^{-1}$
\end_inset
though it is not necessary to worry about rigorously defining this here.
\end_layout
\end_inset
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
Note that if one wants invariance under redefinitions of
\begin_inset Formula $\mathcal{W}$
\end_inset
then one also needs to insert a factor of
\begin_inset Formula $\mathrm{Det}\left(\frac{\delta\mathcal{W}}{\delta\phi}\right)$
\end_inset
.
This can be handled straightforwardly in the functional formalism through
the introduction of Faddeev-Popov ghost fields
\begin_inset CommandInset citation
LatexCommand citep
key "Zinn-Justin1990,Peskin1995,Srednicki2007"
\end_inset
.
However, this is not necessary here because there is no strong reason to
consider transformations of
\begin_inset Formula $\mathcal{W}$
\end_inset
.
\end_layout
\end_inset
.
\begin_inset Formula $\Gamma^{\mathrm{SI}}\left[\varphi,\Delta\right]$
\end_inset
is defined only for field configurations satisfying the Ward identity,
and equals the usual effective action on those configurations.
Thus
\begin_inset Formula $\Gamma^{\mathrm{SI}}\left[\varphi,\Delta\right]$
\end_inset
is nothing but the SI-2PIEA as discussed in chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap4"
\end_inset
arrived at in a new way.
\end_layout
\begin_layout Standard
It seems reasonable that the problems encountered with PT symmetry improvement
are due to the singular nature of the constraint surface, as embodied by
the delta function above.
Due to these problems a
\emph on
soft symmetry improved
\emph default
(SSI) effective action
\begin_inset Formula $\Gamma_{\xi}^{\mathrm{SSI}}\left[\varphi,\Delta\right]$
\end_inset
can be introduced where the Ward identity is no longer strictly enforced.
Small violations
\begin_inset Formula $\mathcal{W}\neq0$
\end_inset
are allowed but punished in the functional integral.
A new free parameter controls how strictly the constraint is enforced.
The hope is that the added freedom allows consistent solutions with non-trivial
dynamics (e.g.
linear response to external sources), while the stiffness can be tuned
to make violations of the Ward identity acceptably small in practice.
To achieve this replace the delta function by a smoothed version
\begin_inset Formula $\delta\left(\mathcal{W}\right)\to\delta_{\xi}\left(\mathcal{W}\right)$
\end_inset
defined as follows
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\exp\left(\frac{i}{\hbar}\Gamma_{\xi}^{\mathrm{SSI}}\left[\varphi,\Delta\right]\right) & =N_{0}\int\mathcal{D}\phi\delta\left(\phi-\varphi\right)\exp\left(\frac{i}{\hbar}\Gamma\left[\phi,\Delta\right]\right)\delta_{\xi}\left(\mathcal{W}\left[\phi,\Delta\right]\right)\nonumber \\
& =N_{1}\int\mathcal{D}\left[\phi,\lambda_{\phi},\lambda_{W}\right]\exp\left(\frac{i}{\hbar}\left[\lambda_{\phi}\left(\phi-\varphi\right)+\Gamma\left[\phi,\Delta\right]+\lambda_{W}\mathcal{W}-\frac{1}{2}\xi\lambda_{W}^{2}\right]\right)\nonumber \\
& =N_{2}\int\mathcal{D}\left[\phi,\lambda_{\phi}\right]\exp\left(\frac{i}{\hbar}\left[\lambda_{\phi}\left(\phi-\varphi\right)+\Gamma\left[\phi,\Delta\right]+\frac{1}{2\xi}\mathcal{W}^{2}\right]\right)\nonumber \\
& =\exp\left(\frac{i}{\hbar}\left[\Gamma\left[\varphi,\Delta\right]+\frac{1}{2\xi}\mathcal{W}^{2}\left[\varphi,\Delta\right]\right]\right).
\end{align}
\end_inset
The first line is a formal expression that is defined by the next line.
The Fourier representation of the delta functions are used to replace
\begin_inset Formula $\delta\left(\phi-\varphi\right)\to\int\mathcal{D}\lambda_{\phi}\exp\frac{i}{\hbar}\lambda_{\phi}\left(\phi-\varphi\right)$
\end_inset
etc.
The
\begin_inset Formula $\frac{1}{2}\xi\lambda_{W}^{2}$
\end_inset
term is the one responsible for smoothing the delta function, with the
limit
\begin_inset Formula $\xi\to0$
\end_inset
corresponding to a stiffening of the constraint.
In the third line the integral over
\begin_inset Formula $\lambda_{W}$
\end_inset
, which is Gaussian, is performed.
Finally, the integral over
\begin_inset Formula $\lambda_{\phi}$
\end_inset
yields a delta function which kills the
\begin_inset Formula $\phi$
\end_inset
integral, resulting in
\begin_inset Formula
\begin{equation}
\Gamma_{\xi}^{\mathrm{SSI}}\left[\varphi,\Delta\right]=\Gamma\left[\varphi,\Delta\right]+\frac{1}{2\xi}\mathcal{W}^{2}\left[\varphi,\Delta\right].
\end{equation}
\end_inset
In a slight generalisation of this derivation one can use the smoothing
term
\begin_inset Formula $-\frac{1}{2}\xi\lambda_{W}R^{-1}\lambda_{W}$
\end_inset
where
\begin_inset Formula $R^{-1}$
\end_inset
is an arbitrary positive definite symmetric kernel which may depend on
\begin_inset Formula $\varphi$
\end_inset
and
\begin_inset Formula $\Delta$
\end_inset
, which gives
\begin_inset Formula
\begin{equation}
\Gamma_{\xi R}^{\mathrm{SSI}}\left[\varphi,\Delta\right]=\Gamma\left[\varphi,\Delta\right]+\frac{1}{2\xi}\mathcal{W}R\mathcal{W}-\frac{i\hbar}{2}\mathrm{Tr}\ln R.
\end{equation}
\end_inset
This is the most general form of the definition of the SSI-2PIEA.
The simpler form
\begin_inset Formula $\Gamma_{\xi}^{\mathrm{SSI}}\left[\varphi,\Delta\right]$
\end_inset
corresponds to a trivial kernel (now with indices explicit)
\begin_inset Formula
\begin{equation}
R_{ab}^{AB}\left(x,y\right)=\delta^{AB}\delta_{ab}\delta\left(x-y\right),
\end{equation}
\end_inset
which is used exclusively in the following, though the freedom to choose
a non-trivial
\begin_inset Formula $R$
\end_inset
in the definition of the SSI effective action may be useful in certain
circumstances.
The end result is simply that
\begin_inset Formula $\mathcal{W}=0$
\end_inset
is enforced in the sense of (possibly weighted if
\begin_inset Formula $R$
\end_inset
is non-trivial) least-squared error, rather than as a strict constraint.
\end_layout
\begin_layout Standard
Taking as the SSI equations of motion
\begin_inset Formula $\delta\Gamma_{\xi}^{\mathrm{SSI}}=0$
\end_inset
, it is straightforward to derive the equations of motion, now including
indices:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\frac{\delta\Gamma\left[\varphi,\Delta\right]}{\delta\varphi_{a}} & =-\frac{1}{\xi}\mathcal{W}_{c}^{A}\left[\varphi,\Delta\right]\frac{\delta}{\delta\varphi_{a}}\mathcal{W}_{c}^{A}\left[\varphi,\Delta\right]\nonumber \\
& =-\frac{1}{\xi}\left(\Delta_{cf}^{-1}T_{fg}^{A}\varphi_{g}\right)\Delta_{cd}^{-1}T_{da}^{A},\\
\frac{\delta\Gamma\left[\varphi,\Delta\right]}{\delta\Delta_{ab}} & =-\frac{1}{\xi}\mathcal{W}_{c}^{A}\left[\varphi,\Delta\right]\frac{\delta}{\delta\Delta_{ab}}\mathcal{W}_{c}^{A}\left[\varphi,\Delta\right]\nonumber \\
& =\frac{1}{\xi}\left(\Delta_{cf}^{-1}T_{fg}^{A}\varphi_{g}\right)\Delta_{ca}^{-1}\left(\Delta_{bd}^{-1}T_{de}^{A}\varphi_{e}\right).
\end{align}
\end_inset
Now the spontaneous symmetry breaking ansatz
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:SSB-ansatz-Delta"
\end_inset
, reproduced here
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\varphi_{a} & =v\delta_{aN},\\
\Delta_{ab}^{-1} & =\begin{cases}
\Delta_{G}^{-1} & a=b\neq N,\\
\Delta_{H}^{-1} & a=b=N,
\end{cases}
\end{align}
\end_inset
can be used, yielding
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\frac{\delta\Gamma\left[\varphi,\Delta\right]}{\delta\varphi_{g}\left(x\right)} & =0,\ \left(g\neq N\right),\\
\frac{\delta\Gamma\left[\varphi,\Delta\right]}{\delta\varphi_{N}\left(x\right)} & =\frac{1}{\xi}2\left(N-1\right)v\int_{yz}\Delta_{G}^{-1}\left(y,z\right)\Delta_{G}^{-1}\left(y,x\right)\nonumber \\
& =\frac{1}{\xi}2\left(N-1\right)vm_{G}^{4},\\
\frac{\delta\Gamma\left[\varphi,\Delta\right]}{\delta\Delta_{G}\left(x,y\right)} & =-\frac{1}{\xi}2v^{2}\int_{wrz}\Delta_{G}^{-1}\left(w,r\right)\Delta_{G}^{-1}\left(w,x\right)\Delta_{G}^{-1}\left(y,z\right)\nonumber \\
& =\frac{1}{\xi}2v^{2}m_{G}^{6},\\
\frac{\delta\Gamma\left[\varphi,\Delta\right]}{\delta\Delta_{H}} & =0.
\end{align}
\end_inset
\end_layout
\begin_layout Standard
Note that if one takes
\begin_inset Formula $\xi\to0$
\end_inset
proportionally to
\begin_inset Formula $vm_{G}^{4}$
\end_inset
one obtains for the non-trivial right hand sides above
\begin_inset Formula $2\left(N-1\right)vm_{G}^{4}/\xi\to\text{constant}$
\end_inset
and
\begin_inset Formula $2v^{2}m_{G}^{6}/\xi\to\left(\text{const.}\right)\times vm_{G}^{2}\to0$
\end_inset
and one recovers the usual SI-2PIEA scheme in the limit (c.f.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:SI-2PIEA-H-eom-general"
\end_inset
-
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:SI-2PIEA-G-eom-general"
\end_inset
).
In fact it is shown through a careful treatment of the infinite volume
limit in section
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:Broken-Phase-with-massless-Goldstones"
\end_inset
that this limit is not quite correct, but there does exist a scaling limit
with
\begin_inset Formula $\xi\to0$
\end_inset
which reduces to the SI-2PIEA.
This confirms the intuition that
\begin_inset Formula $\xi\to0$
\end_inset
approaches hard symmetry improvement and that
\begin_inset Formula $\Gamma_{\xi}^{\mathrm{SSI}}\left[\varphi,\Delta\right]\to\Gamma^{\mathrm{SI}}\left[\varphi,\Delta\right]$
\end_inset
which really is just the standard symmetry improved effective action.
In the next sections these equations of motion are renormalised and solved
in the Hartree-Fock approximation.
\end_layout
\begin_layout Section
Renormalisation of the Hartree-Fock truncation
\begin_inset CommandInset label
LatexCommand label
name "sec:ch5-Renormalisation-of-the-HF-truncation"
\end_inset
\end_layout
\begin_layout Standard
Since it turns out that the SSI method is sensitive to the
\begin_inset Formula $\mathrm{V}\beta\to\infty$
\end_inset
limit the theory will be formulated in Euclidean spacetime (i.e.
the Matsubara formalism) in a box of volume
\begin_inset Formula $\mathrm{V}=L^{3}$
\end_inset
with periodic boundary conditions of period
\begin_inset Formula $L$
\end_inset
in the space directions and
\begin_inset Formula $\beta$
\end_inset
in the time
\begin_inset Formula $\tau=it$
\end_inset
direction.
This mirrors the treatment of finite temperature scalar fields in section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Time-contours-Green-functions-NEQFT"
\end_inset
.
The Euclidean continuation leads to
\begin_inset Formula $\partial_{\mu}\partial^{\mu}\to-\nabla^{2}$
\end_inset
,
\begin_inset Formula $\int_{x}\to-i\int_{x_{E}}$
\end_inset
and the conventions
\begin_inset Formula
\begin{align}
f\left(x_{E}\right) & =\frac{1}{\mathrm{V}\beta}\sum_{n,\boldsymbol{k}}\mathrm{e}^{i\left(\omega_{n}\tau+\boldsymbol{k}\cdot\boldsymbol{x}\right)}f\left(n,\boldsymbol{k}\right),\\
f\left(n,\boldsymbol{q}\right) & =\int_{x_{E}}\mathrm{e}^{-i\left(\omega_{m}\tau+\boldsymbol{q}\cdot\boldsymbol{x}\right)}f\left(x_{E}\right),
\end{align}
\end_inset
for Fourier transforms.
This leads to the Fourier transforms of the propagators
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\Delta_{G/H}\left(x,y\right) & =\frac{1}{\mathrm{V}\beta}\sum_{n,\boldsymbol{k}}\mathrm{e}^{i\left(\omega_{n}\left(\tau_{x}-\tau_{y}\right)+\boldsymbol{k}\cdot\left(\boldsymbol{x}-\boldsymbol{y}\right)\right)}\Delta_{G/H}\left(n,\boldsymbol{k}\right),\\
\Delta_{G/H}^{-1}\left(x,y\right) & =\frac{1}{\mathrm{V}\beta}\sum_{n,\boldsymbol{k}}\mathrm{e}^{i\left(\omega_{n}\left(\tau_{x}-\tau_{y}\right)+\boldsymbol{k}\cdot\left(\boldsymbol{x}-\boldsymbol{y}\right)\right)}\Delta_{G/H}^{-1}\left(n,\boldsymbol{k}\right),
\end{align}
\end_inset
and
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\Delta_{G/H}\left(n,\boldsymbol{k}\right)=\int_{x-y}\mathrm{e}^{-i\left(\omega_{n}\left(\tau_{x}-\tau_{y}\right)+\boldsymbol{k}\cdot\left(\boldsymbol{x}-\boldsymbol{y}\right)\right)}\Delta_{G/H}\left(x,y\right),
\end{equation}
\end_inset
etc., where the Matsubara frequencies are
\begin_inset Formula $\omega_{n}=2\pi n/\beta$
\end_inset
and the wave vectors
\begin_inset Formula $\boldsymbol{k}$
\end_inset
are discretised on a lattice of spacing
\begin_inset Formula $2\pi/L$
\end_inset
.
The four dimensional Euclidean shorthand
\begin_inset Formula $k_{E}=\left(\omega_{n},\boldsymbol{k}\right)$
\end_inset
is often useful.
\end_layout
\begin_layout Standard
It is straightforward to modify the real time 2PIEA of chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:chap2"
\end_inset
to the Euclidean formalism.
The results are collected here for easy reference.
The defining functional integral of the field theory is the partition function
\begin_inset Formula
\begin{equation}
Z\left[J,K\right]=\int\mathcal{D}\left[\phi\right]\exp\left(-S_{E}\left[\phi\right]-J_{a}\phi_{a}-\frac{1}{2}\phi_{a}K_{ab}\phi_{b}\right),
\end{equation}
\end_inset
where
\begin_inset Formula
\begin{equation}
S_{E}\left[\phi\right]=\int_{x}\frac{1}{2}\left(\nabla\phi_{a}\right)^{2}+\frac{1}{2}m^{2}\phi_{a}\phi_{a}+\frac{1}{4!}\lambda\left(\phi_{a}\phi_{a}\right)^{2},
\end{equation}
\end_inset
is the Euclidean action.
Then
\begin_inset Formula $W\left[J,K\right]=-\ln Z\left[J,K\right]$
\end_inset
is the connected generating functional and
\begin_inset Formula
\begin{equation}
\Gamma\left[\varphi,\Delta\right]=W-J\frac{\delta W}{\delta J}-K\frac{\delta W}{\delta K},
\end{equation}
\end_inset
is the standard 2PIEA once
\begin_inset Formula $J$
\end_inset
and
\begin_inset Formula $K$
\end_inset
are eliminated in terms of
\begin_inset Formula $\varphi$
\end_inset
and
\begin_inset Formula $\Delta$
\end_inset
using
\begin_inset Formula
\begin{align}
\frac{\delta W}{\delta J_{a}} & =\left\langle \phi_{a}\right\rangle =\varphi_{a},\\
\frac{\delta W}{\delta K_{ab}} & =\frac{1}{2}\left\langle \phi_{a}\phi_{b}\right\rangle =\frac{1}{2}\left(\Delta_{ab}+\varphi_{a}\varphi_{b}\right).
\end{align}
\end_inset
As before, the Legendre transform can be evaluated by the saddle point method,
which results in
\begin_inset Formula
\begin{equation}
\Gamma=S_{E}\left[\varphi\right]+\frac{1}{2}\mathrm{Tr}\ln\left(\Delta^{-1}\right)+\frac{1}{2}\mathrm{Tr}\left(\Delta_{0}^{-1}\Delta-1\right)+\Gamma_{2},
\end{equation}
\end_inset
where
\begin_inset Formula $\Gamma_{2}$
\end_inset
is the set of two particle irreducible graphs and
\begin_inset Formula $\Delta_{0}^{-1}=\delta^{2}S_{E}/\delta\phi\delta\phi$
\end_inset
is the unperturbed propagator
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\Delta_{0ab}^{-1}=\left(-\nabla^{2}+m^{2}+\frac{1}{6}\lambda\varphi^{2}\right)\delta_{ab}+\frac{1}{3}\lambda\varphi_{a}\varphi_{b}.
\end{equation}
\end_inset
To two loop order
\begin_inset Formula
\begin{align}
\Gamma_{2} & =\frac{1}{4!}\lambda\Delta_{aa}\Delta_{bb}+\frac{1}{12}\lambda\Delta_{ab}\Delta_{ab}-\frac{1}{36}\lambda^{2}\varphi_{b}\Delta_{ac}\Delta_{ac}\Delta_{bd}\varphi_{d}-\frac{1}{18}\lambda^{2}\varphi_{b}\Delta_{ac}\Delta_{ad}\Delta_{bc}\varphi_{d}+\cdots.
\end{align}
\end_inset
\end_layout
\begin_layout Standard
To form
\begin_inset Formula $\Gamma_{\xi}^{\mathrm{SSI}}$
\end_inset
one adds the soft-symmetry improvement term
\begin_inset Formula $-\frac{1}{2\xi}\mathcal{W}^{2}$
\end_inset
where the Ward identity
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:1PI-Delta-WI"
\end_inset
is
\begin_inset Formula
\begin{equation}
\mathcal{W}_{a}^{A}=\Delta_{ab}^{-1}T_{bc}^{A}\varphi_{c}.
\end{equation}
\end_inset
(Note that
\begin_inset Formula $\mathcal{W}$
\end_inset
is pure imaginary due to the
\begin_inset Formula $i$
\end_inset
in
\begin_inset Formula $T^{A}$
\end_inset
so
\begin_inset Formula $-\mathcal{W}^{2}$
\end_inset
is positive definite.) Using the spontaneous symmetry breaking ansatz and
inserting the ten renormalisation constants
\begin_inset Formula $Z$
\end_inset
,
\begin_inset Formula $Z_{\Delta}$
\end_inset
,
\begin_inset Formula $\delta m_{0,1}^{2}$
\end_inset
,
\begin_inset Formula $\delta\lambda_{0}$
\end_inset
,
\begin_inset Formula $\delta\lambda_{1,2}^{A,B}$
\end_inset
,
\begin_inset Formula $\delta\lambda$
\end_inset
(c.f.
section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Renormalisation-and-solution-2PI-HF"
\end_inset
) and a new one
\begin_inset Formula $Z_{\xi}$
\end_inset
for
\begin_inset Formula $\xi$
\end_inset
gives the renormalised SSI effective action:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\Gamma_{\xi}^{\mathrm{SSI}}\left[\varphi,\Delta\right] & =\int_{x}\left(Z_{\Delta}^{-1}\frac{m^{2}+\delta m_{0}^{2}}{2}v^{2}+\frac{\lambda+\delta\lambda_{0}}{4!}v^{4}\right)\nonumber \\
& +\frac{1}{2}\left(N-1\right)\mathrm{Tr}\ln\left(Z^{-1}Z_{\Delta}^{-1}\Delta_{G}^{-1}\right)+\frac{1}{2}\mathrm{Tr}\ln\left(Z^{-1}Z_{\Delta}^{-1}\Delta_{H}^{-1}\right)\nonumber \\
& +\frac{1}{2}\left(N-1\right)\mathrm{Tr}\left[\left(-ZZ_{\Delta}\nabla^{2}+m^{2}+\delta m_{1}^{2}+Z_{\Delta}\frac{\lambda+\delta\lambda_{1}^{A}}{6}v^{2}\right)\Delta_{G}\right]\nonumber \\
& +\frac{1}{2}\mathrm{Tr}\left[\left(-ZZ_{\Delta}\nabla^{2}+m^{2}+\delta m_{1}^{2}+Z_{\Delta}\frac{3\lambda+\delta\lambda_{1}^{A}+2\delta\lambda_{1}^{B}}{6}v^{2}\right)\Delta_{H}\right]\nonumber \\
& +\Gamma_{2}+Z_{\xi}^{-1}\frac{1}{\xi}\left(N-1\right)v^{2}Z^{-1}Z_{\Delta}^{-2}\int_{xyz}\Delta_{G}^{-1}\left(x,y\right)\Delta_{G}^{-1}\left(x,z\right)
\end{align}
\end_inset
with
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\Gamma_{2} & =\frac{1}{4!}Z_{\Delta}^{2}\left(\lambda+\delta\lambda_{2}^{A}\right)\Delta_{aa}\Delta_{bb}+\frac{1}{12}Z_{\Delta}^{2}\left(\lambda+\delta\lambda_{2}^{B}\right)\Delta_{ab}\Delta_{ab}\nonumber \\
& -\frac{1}{36}Z_{\Delta}^{3}\left(\lambda+\delta\lambda\right)^{2}\varphi_{b}\Delta_{ac}\Delta_{ac}\Delta_{bd}\varphi_{d}-\frac{1}{18}Z_{\Delta}^{3}\left(\lambda+\delta\lambda\right)^{2}\varphi_{b}\Delta_{ac}\Delta_{ad}\Delta_{bc}\varphi_{d}+\cdots\\
& =\frac{1}{4!}Z_{\Delta}^{2}\left(N-1\right)\left[\left(N+1\right)\lambda+\left(N-1\right)\delta\lambda_{2}^{A}+2\delta\lambda_{2}^{B}\right]\Delta_{G}\Delta_{G}\nonumber \\
& +\frac{1}{4!}Z_{\Delta}^{2}\left(\lambda+\delta\lambda_{2}^{A}\right)2\left(N-1\right)\Delta_{G}\Delta_{H}+\frac{1}{4!}Z_{\Delta}^{2}\left[3\lambda+\delta\lambda_{2}^{A}+2\delta\lambda_{2}^{B}\right]\Delta_{H}\Delta_{H}\nonumber \\
& -\frac{1}{36}\left(N-1\right)Z_{\Delta}^{3}\left(\lambda+\delta\lambda\right)^{2}v^{2}\Delta_{G}\Delta_{G}\Delta_{H}-\frac{1}{12}Z_{\Delta}^{3}\left(\lambda+\delta\lambda\right)^{2}v^{2}\Delta_{H}\Delta_{H}\Delta_{H}+\cdots.
\end{align}
\end_inset
This can be simplified using the mode expansions for
\begin_inset Formula $\Delta_{G/H}$
\end_inset
and doing the integrals, giving
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align}
\Gamma_{\xi}^{\mathrm{SSI}}\left[\varphi,\Delta\right] & =\mathrm{V}\beta\left(Z_{\Delta}^{-1}\frac{m^{2}+\delta m_{0}^{2}}{2}v^{2}+\frac{\lambda+\delta\lambda_{0}}{4!}v^{4}\right)+\frac{1}{2}N\mathrm{V}\beta\ln\left(Z^{-1}Z_{\Delta}^{-1}\right)\nonumber \\
& +\frac{1}{2}\left(N-1\right)\sum_{n,\boldsymbol{k}}\ln\frac{1}{\Delta_{G}\left(n,\boldsymbol{k}\right)}+\frac{1}{2}\sum_{n,\boldsymbol{k}}\ln\frac{1}{\Delta_{H}\left(n,\boldsymbol{k}\right)}\nonumber \\
& +\frac{1}{2}\left(N-1\right)\sum_{n,\boldsymbol{k}}\left(ZZ_{\Delta}k_{E}^{2}+m^{2}+\delta m_{1}^{2}+Z_{\Delta}\frac{\lambda+\delta\lambda_{1}^{A}}{6}v^{2}\right)\Delta_{G}\left(n,\boldsymbol{k}\right)\nonumber \\
& +\frac{1}{2}\sum_{n,\boldsymbol{k}}\left(ZZ_{\Delta}k_{E}^{2}+m^{2}+\delta m_{1}^{2}+Z_{\Delta}\frac{3\lambda+\delta\lambda_{1}^{A}+2\delta\lambda_{1}^{B}}{6}v^{2}\right)\Delta_{H}\left(n,\boldsymbol{k}\right)\nonumber \\
& +\Gamma_{2}+Z_{\xi}^{-1}\frac{1}{\xi}\left(N-1\right)v^{2}Z^{-1}Z_{\Delta}^{-2}\mathrm{V}\beta\left[\Delta_{G}^{-1}\left(0,\boldsymbol{0}\right)\right]^{2},
\end{align}
\end_inset
noting that the integrals in the SSI term give
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\int_{xyz}\Delta_{G}^{-1}\left(x,y\right)\Delta_{G}^{-1}\left(x,z\right)=\mathrm{V}\beta\left[\Delta_{G}^{-1}\left(0,\boldsymbol{0}\right)\right]^{2}.
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Now one can make a basic consistency check by examining the tree level equations
of motion, which are (setting renormalisation constants to their trivial
values)
\begin_inset Formula
\begin{align}
0 & =\mathrm{V}\beta v\left\{ \left(m^{2}+\frac{\lambda}{6}v^{2}\right)+\frac{2\left(N-1\right)}{\xi}\left[\Delta_{G}^{-1}\left(0,\boldsymbol{0}\right)\right]^{2}\right\} ,\\
\frac{1}{\Delta_{G}\left(n,\boldsymbol{k}\right)} & =k_{E}^{2}+m^{2}+\frac{\lambda}{6}v^{2},\ n,\boldsymbol{k}\neq0,\\
\Delta_{G}^{-1}\left(0,\boldsymbol{0}\right) & =m^{2}+\frac{\lambda}{6}v^{2}-\frac{4\mathrm{V}\beta}{\xi}v^{2}\left[\Delta_{G}^{-1}\left(0,\boldsymbol{0}\right)\right]^{3},\\
\frac{1}{\Delta_{H}\left(n,\boldsymbol{k}\right)} & =k_{E}^{2}+m^{2}+\frac{\lambda}{2}v^{2}.
\end{align}
\end_inset
Indeed these have
\begin_inset Formula $v^{2}=-6m^{2}/\lambda$
\end_inset
,
\begin_inset Formula $\Delta_{G}^{-1}\left(n,\boldsymbol{k}\right)=k_{E}^{2}$
\end_inset
and
\begin_inset Formula $\Delta_{H}^{-1}\left(n,\boldsymbol{k}\right)=k_{E}^{2}+m_{H}^{2}=k_{E}^{2}+\frac{\lambda}{3}v^{2}$
\end_inset
as a consistent solution as expected.
Since these equations are self-consistent there is a valid concern about
possible spurious solutions.
This can be investigated by solving the
\begin_inset Formula $v$
\end_inset
and