Skip to content

Latest commit

 

History

History
169 lines (123 loc) · 3.58 KB

README_CN.md

File metadata and controls

169 lines (123 loc) · 3.58 KB

YOLO系列 TensorRT Python/C++

支持

YOLOv7、YOLOv6、 YOLOX、 YOLOV5、

更新

  • 2022.7.8 支持YOLOV7
  • 2022.7.3 支持 TRT int8 post-training quantization

准备TensorRT环境

Python

pip install --upgrade setuptools pip --user
pip install nvidia-pyindex
pip install --upgrade nvidia-tensorrt
pip install pycuda

C++

By Docker

快速上手

这个python的demo可以帮助你快速的理解这个项目 Link

YOLOv7 [支持C++, Python]

https://github.com/WongKinYiu/yolov7.git

修改代码:将 yolo.py 对应行修改如下: https://github.com/WongKinYiu/yolov7/blob/5f1b78ad614b45c5a98e7afdd295e20033d5ad3c/models/yolo.py#L57

return x if self.training else (torch.cat(z, 1), ) if not self.export else (torch.cat(z, 1), x)

导出onnx

python models/export.py --weights ../yolov7.pt --grid

转化为TensorRT Engine

python export.py -o onnx-name -e trt-name -p fp32/16/int8

测试

cd yolov7
python trt.py

C++

C++ Demo

YOLOv6 [支持C++, Python]

model input FPS Device Language
yolov6s 640*640 FP16 360FPS A100 Python
yolov6s 640*640 FP32 350FPS A100 Python
yolov6s 640*640 FP32 330FPS 1080Ti C++
yolov6s 640*640 FP32 300FPS 1080Ti Python

YOLOv6 bilibili

git clone https://github.com/meituan/YOLOv6.git

导出onnx

python deploy/ONNX/export_onnx.py --weights yolov6s.pt --img 640 --batch 1

转化为TensorRT Engine

python export.py -o onnx-name -e trt-name -p fp32/16/int8

测试

cd yolov6
python trt.py

C++

C++ Demo

YOLOX [支持Python]

导出ONNX

git clone https://github.com/Megvii-BaseDetection/YOLOX.git
修改 export_onnx.py  model.head.decode_in_inference = True

修改 yolox/models/yolox_head.py文件

# [batch, n_anchors_all, 85]
# outputs = torch.cat(
#     [x.flatten(start_dim=2) for x in outputs], dim=2

# ).permute(0, 2, 1)
outputs = torch.cat(
    [x.view(-1,int(x.size(1)),int(x.size(2)*x.size(3))) for x in outputs], dim=2

).permute(0, 2, 1)

# outputs[..., :2] = (outputs[..., :2] + grids) * strides
# outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
# return outputs
xy =  (outputs[..., :2] + grids) * strides
wh = torch.exp(outputs[..., 2:4]) * strides
return torch.cat((xy, wh, outputs[..., 4:]), dim=-1)
python3 tools/export_onnx.py --output-name yolox_s.onnx -n yolox-s -c yolox_s.pth

转化为TensorRT Engine

python export.py -o onnx-name -e trt-name -p fp32/16/int8

测试

cd yolovx
python trt.py

YOLOV5 [支持Python]

导出ONNX

git clone https://github.com/ultralytics/yolov5.git
python path/to/export.py --weights yolov5s.pt --include  onnx 

转化为TensorRT Engine

python export.py -o onnx-name -e trt-name -p fp32/16/int8

测试

cd yolov5
python trt.py