forked from taki0112/CASED-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.py
76 lines (59 loc) · 2.31 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import argparse
import tensorflow as tf
from CASED_train import CASED
from utils import check_folder
from utils import show_all_variables
"""parsing and configuration"""
def parse_args():
desc = "Tensorflow implementation of CASED"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--epoch', type=int, default=3, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=16, help='The size of batch')
parser.add_argument('--test_batch_size', type=int, default=16, help='The size of test batch')
parser.add_argument('--num_gpu', type=int, default=8, help='# of gpu')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint',
help='Directory name to save the checkpoints')
parser.add_argument('--result_dir', type=str, default='results',
help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --checkpoint_dir
check_folder(args.checkpoint_dir)
# --result_dir
check_folder(args.result_dir)
# --result_dir
check_folder(args.log_dir)
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
assert args.test_batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
# open session
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
model = CASED(sess, epoch=args.epoch, batch_size=args.batch_size, test_batch_size=args.test_batch_size, num_gpu=args.num_gpu,
checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir)
# build graph
model.build_model()
# show network architecture
show_all_variables()
# launch the graph in a session
model.train()
print(" [*] Training finished!")
if __name__ == '__main__':
main()