-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
435 lines (371 loc) · 14.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import torch
from torch.utils.data import DataLoader # 데이터로더
from gluonnlp.data import SentencepieceTokenizer
from kogpt2.utils import get_tokenizer
from kogpt2.utils import download, tokenizer
from kogpt2.model.torch_gpt2 import GPT2Config, GPT2LMHeadModel
from kogpt2.data import Read_Dataseimport torch
from torch.utils.data import DataLoader # 데이터로더
from gluonnlp.data import SentencepieceTokenizer
from kogpt2.utils import get_tokenizer
from kogpt2.utils import download, tokenizer
from kogpt2.model.torch_gpt2 import GPT2Config, GPT2LMHeadModel
from kogpt2.data import Read_Dataset
import gluonnlp
from kogpt2.model.sample import sample_sequence
from tqdm import tqdm
import subprocess
import os
from tensorboardX import SummaryWriter
import re
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=200,
help="epoch 를 통해서 학습 범위를 조절합니다.")
parser.add_argument('--save_path', type=str, default='./checkpoint/',
help="학습 결과를 저장하는 경로입니다.")
parser.add_argument('--load_path', type=str, default='./checkpoint/KoGPT2_checkpoint_100000.tar', #
help="학습된 결과를 불러오는 경로입니다.")
parser.add_argument('--samples', type=str, default="samples/",
help="생성 결과를 저장할 경로입니다.")
parser.add_argument('--data_file_path', type=str, default='dataset/lyrics_dataset.txt',
help="학습할 데이터를 불러오는 경로입니다.")
parser.add_argument('--batch_size', type=int, default=8,
help="batch_size 를 지정합니다.")
args = parser.parse_args()
'''
pytorch_kogpt2 = {
'url':
'checkpoint/pytorch_kogpt2_676e9bcfa7.params',
'fname': 'pytorch_kogpt2_676e9bcfa7.params',
'chksum': '676e9bcfa7'
}
'''
pytorch_kogpt2 = {
'url':
'https://kobert.blob.core.windows.net/models/kogpt2/pytorch/pytorch_kogpt2_676e9bcfa7.params',
'fname': 'pytorch_kogpt2_676e9bcfa7.params',
'chksum': '676e9bcfa7'
}
kogpt2_config = {
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"n_ctx": 1024,
"n_embd": 768,
"n_head": 12,
"n_layer": 12,
"n_positions": 1024,
"vocab_size": 50000
}
def auto_enter(text):
text = (text.replace(" ", "\n"))
text = text.split("\n")
text = [t.lstrip() for t in text if t != '']
return "\n\n".join(text)
def get_gpu_memory_map():
"""Get the current gpu usage.
Returns
-------
usage: dict
Keys are device ids as integers.
Values are memory usage as integers in MB.
"""
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.used',
'--format=csv,nounits,noheader'
], encoding='utf-8')
# Convert lines into a dictionary
gpu_memory = [int(x) for x in result.strip().split('\n')]
gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory))
return gpu_memory_map
def main(epoch, save_path, load_path, samples, data_file_path, batch_size):
ctx = 'cuda'
cachedir = '~/kogpt2/'
summary = SummaryWriter()
# download model
model_info = pytorch_kogpt2
model_path = download(model_info['url'],
model_info['fname'],
model_info['chksum'],
cachedir=cachedir)
# download vocab
vocab_info = tokenizer
vocab_path = download(vocab_info['url'],
vocab_info['fname'],
vocab_info['chksum'],
cachedir=cachedir)
# KoGPT-2 언어 모델 학습을 위한 GPT2LMHeadModel 선언
kogpt2model = GPT2LMHeadModel(config=GPT2Config.from_dict(kogpt2_config))
# model_path 로부터 다운로드 받은 내용을 load_state_dict 으로 업로드
kogpt2model.load_state_dict(torch.load(model_path))
device = torch.device(ctx)
kogpt2model.to(device)
# 불러오기 부분
try:
checkpoint = torch.load(load_path, map_location=device)
# KoGPT-2 언어 모델 학습을 위한 GPT2LMHeadModel 선언
kogpt2model = GPT2LMHeadModel(config=GPT2Config.from_dict(kogpt2_config))
kogpt2model.load_state_dict(checkpoint['model_state_dict'])
kogpt2model.eval()
except:
count = 0
else:
count = int(re.findall("\d+", load_path)[1])
print(count)
# 추가로 학습하기 위해 .train() 사용
kogpt2model.train()
vocab_b_obj = gluonnlp.vocab.BERTVocab.from_sentencepiece(vocab_path,
mask_token=None,
sep_token=None,
cls_token=None,
unknown_token='<unk>',
padding_token='<pad>',
bos_token='<s>',
eos_token='</s>')
tok_path = get_tokenizer()
model, vocab = kogpt2model, vocab_b_obj
tok = SentencepieceTokenizer(tok_path)
dataset = Read_Dataset(data_file_path, vocab, tok)
print("Read_Dataset ok")
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, pin_memory=True)
learning_rate = 3e-5
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
print('KoGPT-2 Transfer Learning Start')
avg_loss = (0.0, 0.0)
for epoch in range(epoch):
for data in data_loader:
optimizer.zero_grad()
#print(data)
data = torch.stack(data) # list of Tensor로 구성되어 있기 때문에 list를 stack을 통해 변환해준다.
data = data.transpose(1,0)
data = data.to(ctx)
model = model.to(ctx)
outputs = model(data, labels=data)
loss, logits = outputs[:2]
loss = loss.to(ctx)
loss.backward()
avg_loss = (avg_loss[0] * 0.99 + loss, avg_loss[1] * 0.99 + 1.0)
optimizer.step()
if count % 10 == 0:
print('epoch no.{0} train no.{1} loss = {2:.5f} avg_loss = {3:.5f}' . format(epoch, count, loss, avg_loss[0] / avg_loss[1]))
summary.add_scalar('loss/avg_loss', avg_loss[0] / avg_loss[1], count)
summary.add_scalar('loss/loss', loss, count)
# generator 진행
if (count > 0 and count % 1000 == 0) or (len(data) < batch_size):
sent = sample_sequence(model.to("cpu"), tok,vocab, sent="추억의", text_size=100, temperature=0.7, top_p=0.8, top_k=40)
sent = sent.replace("<unused0>", "\n") # 비효율적이지만 엔터를 위해서 등장
sent = auto_enter(sent)
print(sent)
summary.add_text('Text', sent, count)
if count > 20000:
now = []
for n in os.listdir(samples): #ipynb.checkpoint 땜에ㅠ
try:
#print(int(n))
now.append(int(n))
except:
continue
if(len(now)==0):
now=0
else:
now = max(now)
f = open(samples + str(now + 1), 'w', encoding="utf-8")
f.write(sent)
f.close()
#########################################
count += 1
if (count > 0 and count % 20000 == 0 and count>400000) or (len(data) < batch_size):
# 모델 저장
try:
torch.save({
'epoch': epoch,
'train_no': count,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}, save_path + 'KoGPT2_checkpoint_' + str(count) + '.tar')
except:
pass
if __name__ == "__main__":
main(args.epoch, args.save_path, args.load_path, args.samples, args.data_file_path, args.batch_size)t
import gluonnlp
from kogpt2.model.sample import sample_sequence
from tqdm import tqdm
import subprocess
import os
from tensorboardX import SummaryWriter
import re
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=200,
help="epoch 를 통해서 학습 범위를 조절합니다.")
parser.add_argument('--save_path', type=str, default='./checkpoint/',
help="학습 결과를 저장하는 경로입니다.")
parser.add_argument('--load_path', type=str, default='./checkpoint/KoGPT2_checkpoint_100000.tar', #
help="학습된 결과를 불러오는 경로입니다.")
parser.add_argument('--samples', type=str, default="samples/",
help="생성 결과를 저장할 경로입니다.")
parser.add_argument('--data_file_path', type=str, default='dataset/lyrics_dataset.txt',
help="학습할 데이터를 불러오는 경로입니다.")
parser.add_argument('--batch_size', type=int, default=8,
help="batch_size 를 지정합니다.")
args = parser.parse_args()
'''
pytorch_kogpt2 = {
'url':
'checkpoint/pytorch_kogpt2_676e9bcfa7.params',
'fname': 'pytorch_kogpt2_676e9bcfa7.params',
'chksum': '676e9bcfa7'
}
'''
pytorch_kogpt2 = {
'url':
'https://kobert.blob.core.windows.net/models/kogpt2/pytorch/pytorch_kogpt2_676e9bcfa7.params',
'fname': 'pytorch_kogpt2_676e9bcfa7.params',
'chksum': '676e9bcfa7'
}
kogpt2_config = {
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"n_ctx": 1024,
"n_embd": 768,
"n_head": 12,
"n_layer": 12,
"n_positions": 1024,
"vocab_size": 50000
}
def auto_enter(text):
text = (text.replace(" ", "\n"))
text = text.split("\n")
text = [t.lstrip() for t in text if t != '']
return "\n\n".join(text)
def get_gpu_memory_map():
"""Get the current gpu usage.
Returns
-------
usage: dict
Keys are device ids as integers.
Values are memory usage as integers in MB.
"""
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.used',
'--format=csv,nounits,noheader'
], encoding='utf-8')
# Convert lines into a dictionary
gpu_memory = [int(x) for x in result.strip().split('\n')]
gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory))
return gpu_memory_map
def main(epoch, save_path, load_path, samples, data_file_path, batch_size):
ctx = 'cuda'
cachedir = '~/kogpt2/'
summary = SummaryWriter()
# download model
model_info = pytorch_kogpt2
model_path = download(model_info['url'],
model_info['fname'],
model_info['chksum'],
cachedir=cachedir)
# download vocab
vocab_info = tokenizer
vocab_path = download(vocab_info['url'],
vocab_info['fname'],
vocab_info['chksum'],
cachedir=cachedir)
# KoGPT-2 언어 모델 학습을 위한 GPT2LMHeadModel 선언
kogpt2model = GPT2LMHeadModel(config=GPT2Config.from_dict(kogpt2_config))
# model_path 로부터 다운로드 받은 내용을 load_state_dict 으로 업로드
kogpt2model.load_state_dict(torch.load(model_path))
device = torch.device(ctx)
kogpt2model.to(device)
# 불러오기 부분
try:
checkpoint = torch.load(load_path, map_location=device)
# KoGPT-2 언어 모델 학습을 위한 GPT2LMHeadModel 선언
kogpt2model = GPT2LMHeadModel(config=GPT2Config.from_dict(kogpt2_config))
kogpt2model.load_state_dict(checkpoint['model_state_dict'])
kogpt2model.eval()
except:
count = 0
else:
count = int(re.findall("\d+", load_path)[1])
print(count)
# 추가로 학습하기 위해 .train() 사용
kogpt2model.train()
vocab_b_obj = gluonnlp.vocab.BERTVocab.from_sentencepiece(vocab_path,
mask_token=None,
sep_token=None,
cls_token=None,
unknown_token='<unk>',
padding_token='<pad>',
bos_token='<s>',
eos_token='</s>')
tok_path = get_tokenizer()
model, vocab = kogpt2model, vocab_b_obj
tok = SentencepieceTokenizer(tok_path)
dataset = Read_Dataset(data_file_path, vocab, tok)
print("Read_Dataset ok")
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, pin_memory=True)
learning_rate = 3e-5
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
print('KoGPT-2 Transfer Learning Start')
avg_loss = (0.0, 0.0)
for epoch in range(epoch):
for data in data_loader:
optimizer.zero_grad()
#print(data)
data = torch.stack(data) # list of Tensor로 구성되어 있기 때문에 list를 stack을 통해 변환해준다.
data = data.transpose(1,0)
data = data.to(ctx)
model = model.to(ctx)
outputs = model(data, labels=data)
loss, logits = outputs[:2]
loss = loss.to(ctx)
loss.backward()
avg_loss = (avg_loss[0] * 0.99 + loss, avg_loss[1] * 0.99 + 1.0)
optimizer.step()
if count % 10 == 0:
print('epoch no.{0} train no.{1} loss = {2:.5f} avg_loss = {3:.5f}' . format(epoch, count, loss, avg_loss[0] / avg_loss[1]))
summary.add_scalar('loss/avg_loss', avg_loss[0] / avg_loss[1], count)
summary.add_scalar('loss/loss', loss, count)
# generator 진행
if (count > 0 and count % 1000 == 0) or (len(data) < batch_size):
sent = sample_sequence(model.to("cpu"), tok,vocab, sent="추억의", text_size=100, temperature=0.7, top_p=0.8, top_k=40)
sent = sent.replace("<unused0>", "\n") # 비효율적이지만 엔터를 위해서 등장
sent = auto_enter(sent)
print(sent)
summary.add_text('Text', sent, count)
if count > 20000:
now = []
for n in os.listdir(samples): #ipynb.checkpoint 땜에ㅠ
try:
#print(int(n))
now.append(int(n))
except:
continue
if(len(now)==0):
now=0
else:
now = max(now)
f = open(samples + str(now + 1), 'w', encoding="utf-8")
f.write(sent)
f.close()
#########################################
count += 1
if (count > 0 and count % 20000 == 0 and count>400000) or (len(data) < batch_size):
# 모델 저장
try:
torch.save({
'epoch': epoch,
'train_no': count,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}, save_path + 'KoGPT2_checkpoint_' + str(count) + '.tar')
except:
pass
if __name__ == "__main__":
main(args.epoch, args.save_path, args.load_path, args.samples, args.data_file_path, args.batch_size)