forked from pytorch-ignite/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10-distributed.py
370 lines (297 loc) · 10.1 KB
/
cifar10-distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import fire
from datetime import datetime
from pathlib import Path
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models
from torchvision.transforms import (
Compose,
Normalize,
Pad,
RandomCrop,
RandomHorizontalFlip,
ToTensor,
)
import ignite
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.handlers import PiecewiseLinear
from ignite.engine import (
Events,
create_supervised_trainer,
create_supervised_evaluator,
)
from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine
from ignite.metrics import Accuracy, Loss
from ignite.utils import manual_seed, setup_logger
config = {
"seed": 543,
"data_path": "cifar10",
"output_path": "output-cifar10/",
"model": "resnet18",
"batch_size": 512,
"momentum": 0.9,
"weight_decay": 1e-4,
"num_workers": 2,
"num_epochs": 5,
"learning_rate": 0.4,
"num_warmup_epochs": 1,
"validate_every": 3,
"checkpoint_every": 200,
"backend": None,
"resume_from": None,
"log_every_iters": 15,
"nproc_per_node": None,
"with_clearml": False,
"with_amp": False,
}
def get_train_test_datasets(path):
train_transform = Compose(
[
Pad(4),
RandomCrop(32, fill=128),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
test_transform = Compose(
[
ToTensor(),
Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
train_ds = datasets.CIFAR10(
root=path, train=True, download=False, transform=train_transform
)
test_ds = datasets.CIFAR10(
root=path, train=False, download=False, transform=test_transform
)
return train_ds, test_ds
def get_dataflow(config):
train_dataset, test_dataset = get_train_test_datasets(config["data_path"])
train_loader = idist.auto_dataloader(
train_dataset,
batch_size=config["batch_size"],
num_workers=config["num_workers"],
shuffle=True,
drop_last=True,
)
test_loader = idist.auto_dataloader(
test_dataset,
batch_size=2 * config["batch_size"],
num_workers=config["num_workers"],
shuffle=False,
)
return train_loader, test_loader
def get_model(config):
model_name = config["model"]
if model_name in models.__dict__:
fn = models.__dict__[model_name]
else:
raise RuntimeError(f"Unknown model name {model_name}")
model = idist.auto_model(fn(num_classes=10))
return model
def get_optimizer(config, model):
optimizer = optim.SGD(
model.parameters(),
lr=config["learning_rate"],
momentum=config["momentum"],
weight_decay=config["weight_decay"],
nesterov=True,
)
optimizer = idist.auto_optim(optimizer)
return optimizer
def get_criterion():
return nn.CrossEntropyLoss().to(idist.device())
def get_lr_scheduler(config, optimizer):
milestones_values = [
(0, 0.0),
(
config["num_iters_per_epoch"] * config["num_warmup_epochs"],
config["learning_rate"],
),
(config["num_iters_per_epoch"] * config["num_epochs"], 0.0),
]
lr_scheduler = PiecewiseLinear(
optimizer, param_name="lr", milestones_values=milestones_values
)
return lr_scheduler
def get_save_handler(config):
if config["with_clearml"]:
from ignite.contrib.handlers.clearml_logger import ClearMLSaver
return ClearMLSaver(dirname=config["output_path"])
return DiskSaver(config["output_path"], require_empty=False)
def load_checkpoint(resume_from):
checkpoint_fp = Path(resume_from)
assert (
checkpoint_fp.exists()
), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found"
checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu")
return checkpoint
def create_trainer(
model, optimizer, criterion, lr_scheduler, train_sampler, config, logger
):
device = idist.device()
amp_mode = None
scaler = False
trainer = create_supervised_trainer(
model,
optimizer,
criterion,
device=device,
non_blocking=True,
output_transform=lambda x, y, y_pred, loss: {"batch loss": loss.item()},
amp_mode="amp" if config["with_amp"] else None,
scaler=config["with_amp"],
)
trainer.logger = logger
to_save = {
"trainer": trainer,
"model": model,
"optimizer": optimizer,
"lr_scheduler": lr_scheduler,
}
metric_names = [
"batch loss",
]
common.setup_common_training_handlers(
trainer=trainer,
train_sampler=train_sampler,
to_save=to_save,
save_every_iters=config["checkpoint_every"],
save_handler=get_save_handler(config),
lr_scheduler=lr_scheduler,
output_names=metric_names if config["log_every_iters"] > 0 else None,
with_pbars=False,
clear_cuda_cache=False,
)
if config["resume_from"] is not None:
checkpoint = load_checkpoint(config["resume_from"])
Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint)
return trainer
def create_evaluator(model, metrics, config):
device = idist.device()
amp_mode = "amp" if config["with_amp"] else None
evaluator = create_supervised_evaluator(
model, metrics=metrics, device=device, non_blocking=True, amp_mode=amp_mode
)
return evaluator
def setup_rank_zero(logger, config):
device = idist.device()
now = datetime.now().strftime("%Y%m%d-%H%M%S")
output_path = config["output_path"]
folder_name = (
f"{config['model']}_backend-{idist.backend()}-{idist.get_world_size()}_{now}"
)
output_path = Path(output_path) / folder_name
if not output_path.exists():
output_path.mkdir(parents=True)
config["output_path"] = output_path.as_posix()
logger.info(f"Output path: {config['output_path']}")
if config["with_clearml"]:
from clearml import Task
task = Task.init("CIFAR10-Training", task_name=output_path.stem)
task.connect_configuration(config)
# Log hyper parameters
hyper_params = [
"model",
"batch_size",
"momentum",
"weight_decay",
"num_epochs",
"learning_rate",
"num_warmup_epochs",
]
task.connect({k: v for k, v in config.items()})
def log_basic_info(logger, config):
logger.info(f"Train on CIFAR10")
logger.info(f"- PyTorch version: {torch.__version__}")
logger.info(f"- Ignite version: {ignite.__version__}")
if torch.cuda.is_available():
# explicitly import cudnn as torch.backends.cudnn can not be pickled with hvd spawning procs
from torch.backends import cudnn
logger.info(
f"- GPU Device: {torch.cuda.get_device_name(idist.get_local_rank())}"
)
logger.info(f"- CUDA version: {torch.version.cuda}")
logger.info(f"- CUDNN version: {cudnn.version()}")
logger.info("\n")
logger.info("Configuration:")
for key, value in config.items():
logger.info(f"\t{key}: {value}")
logger.info("\n")
if idist.get_world_size() > 1:
logger.info("\nDistributed setting:")
logger.info(f"\tbackend: {idist.backend()}")
logger.info(f"\tworld size: {idist.get_world_size()}")
logger.info("\n")
def log_metrics(logger, epoch, elapsed, tag, metrics):
metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
logger.info(
f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}"
)
def training(local_rank, config):
rank = idist.get_rank()
manual_seed(config["seed"] + rank)
logger = setup_logger(name="CIFAR10-Training")
log_basic_info(logger, config)
if rank == 0:
setup_rank_zero(logger, config)
train_loader, val_loader = get_dataflow(config)
model = get_model(config)
optimizer = get_optimizer(config, model)
criterion = get_criterion()
config["num_iters_per_epoch"] = len(train_loader)
lr_scheduler = get_lr_scheduler(config, optimizer)
trainer = create_trainer(
model, optimizer, criterion, lr_scheduler, train_loader.sampler, config, logger
)
metrics = {
"Accuracy": Accuracy(),
"Loss": Loss(criterion),
}
train_evaluator = create_evaluator(model, metrics, config)
val_evaluator = create_evaluator(model, metrics, config)
def run_validation(engine):
epoch = trainer.state.epoch
state = train_evaluator.run(train_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "train", state.metrics)
state = val_evaluator.run(val_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "val", state.metrics)
trainer.add_event_handler(
Events.EPOCH_COMPLETED(every=config["validate_every"]) | Events.COMPLETED,
run_validation,
)
if rank == 0:
evaluators = {"train": train_evaluator, "val": val_evaluator}
tb_logger = common.setup_tb_logging(
config["output_path"], trainer, optimizer, evaluators=evaluators
)
best_model_handler = Checkpoint(
{"model": model},
get_save_handler(config),
filename_prefix="best",
n_saved=2,
global_step_transform=global_step_from_engine(trainer),
score_name="val_accuracy",
score_function=Checkpoint.get_default_score_fn("Accuracy"),
)
val_evaluator.add_event_handler(
Events.COMPLETED,
best_model_handler,
)
try:
trainer.run(train_loader, max_epochs=config["num_epochs"])
except Exception as e:
logger.exception("")
raise e
if rank == 0:
tb_logger.close()
def run(backend=None, **spawn_kwargs):
config["backend"] = backend
with idist.Parallel(backend=config["backend"], **spawn_kwargs) as parallel:
parallel.run(training, config)
if __name__ == "__main__":
fire.Fire({"run": run})