-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_best_tiling_params.py
97 lines (78 loc) · 2.14 KB
/
find_best_tiling_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import setup # noqa # isort:skip
import numpy as np
import pandas as pd
from tqdm import tqdm
from itertools import product
import tensorflow as tf
from measure import measure_all
from onnx2code.ops.gemm_tiling.GEMM import LoopTilingParams, set_tiling_params
N = 512
input_shape = (N, N)
model = tf.keras.Sequential(
[
tf.keras.Input(shape=input_shape),
tf.keras.layers.Dense(N, activation=None, use_bias=False),
]
)
# nc, kc, mc, mr, nr
nc_options = [N]
kc_options = [64, 128, 256, 512]
mc_options = [64, 128, 256, 512]
mr_options = [2, 4, 8, 16, 32]
nr_options = [2, 4, 8, 16, 32]
mv_options = [2, 4, 8, 16]
nu_options = [2, 4, 8, 16]
params = [
LoopTilingParams(nc=nc, kc=kc, mc=mc, mr=mr, nr=nr, mv=mv, nu=nu)
for nc, kc, mc, mr, nr, mv, nu in product(
nc_options,
kc_options,
mc_options,
mr_options,
nr_options,
mv_options,
nu_options,
)
]
def is_valid_configuration(params: LoopTilingParams) -> bool:
# dont blame me
try:
assert params.nr % params.nu == 0
assert params.mr % params.mv == 0
assert params.nc % params.nr == 0
assert params.mc % params.mr == 0
assert params.kc <= N
return True
except AssertionError:
return False
params = [p for p in params if is_valid_configuration(p)]
results = pd.DataFrame(columns=["nc", "kc", "mc", "mr", "nr", "mv", "nu", "time"])
for p in tqdm(params, desc="Tiling params"):
set_tiling_params(p)
data = measure_all(
model,
variations=["loop-tiling"],
measure_base=False,
runs=300,
tqdm_leave=False,
)
assert len(data) == 1
result = data[next(iter(data.keys()))]
# print(f"result: {np.mean(result):.2f}ms")
entry = {
"nc": int(p.nc),
"kc": int(p.kc),
"mc": int(p.mc),
"mr": int(p.mr),
"nr": int(p.nr),
"mv": int(p.mv),
"nu": int(p.nu),
"time": np.mean(result),
}
results = pd.concat(
[
results,
pd.DataFrame.from_records([entry]),
]
)
results.to_csv("results.csv", index=False)