-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmeasure_models.py
49 lines (41 loc) · 1.5 KB
/
measure_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import setup # noqa # isort:skip
import numpy as np
import pandas as pd
import onnx
from measure import measure_all
from tqdm import tqdm
from onnx2code.ops.gemm_tiling.GEMM import LoopTilingParams, set_tiling_params
# should be set to the best
set_tiling_params(LoopTilingParams(nc=4096, kc=256, mc=64, mr=4, nr=32, mv=2, nu=4))
VARIATIONS = ["conv-naive", "im2col"]
results = pd.DataFrame(columns=["model", "runtime", "time_mean", "time_std"])
models = [
"../data/vision/classification/mnist/model/mnist-12.onnx",
"../data/vision/super_resolution/sub_pixel_cnn_2016/model/super-resolution-10.onnx",
"../data/vision/classification/squeezenet/model/squeezenet1.1-7.onnx",
"../data/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-8.onnx",
"../data/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-7.onnx",
"../data/vision/classification/resnet/model/resnet50-caffe2-v1-9.onnx",
]
for model in tqdm(models):
result = measure_all(
None,
variations=VARIATIONS,
runs=15,
tqdm_leave=False,
onnx_model=onnx.load(model),
)
for var, times in result.items():
entry = {
"model": model,
"runtime": var,
"time_mean": np.mean(times),
"time_std": np.std(times),
}
results = pd.concat(
[
results,
pd.DataFrame.from_records([entry]),
]
)
results.to_csv("results_models.csv", index=False)