Skip to content

Commit 07ad8fd

Browse files
committed
Rework for load_dataset
1 parent fe164ad commit 07ad8fd

File tree

4 files changed

+118
-216
lines changed

4 files changed

+118
-216
lines changed

load_dataset/function.yaml

+12-6
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,8 @@ kind: job
22
metadata:
33
name: load-dataset
44
tag: ''
5-
hash: 0a97acef655930346fe3b36052526ec2dc359456
6-
project: ''
5+
hash: f952386500c0b8abc58f0a2fb6a42ff7c16881bf
6+
project: default
77
labels:
88
author: yjb
99
framework: sklearn
@@ -36,23 +36,29 @@ spec:
3636
- name: context
3737
type: MLClientCtx
3838
doc: function execution context
39+
default: ''
3940
- name: dataset
4041
type: str
4142
doc: name of the dataset to load
43+
default: ''
4244
- name: name
4345
type: str
4446
doc: artifact name (defaults to dataset)
47+
default: ''
4548
- name: file_ext
4649
type: str
4750
doc: 'output file_ext: parquet or csv'
4851
default: parquet
4952
- name: params
5053
type: dict
5154
doc: params of the sklearn load_data method
52-
outputs: []
53-
lineno: 9
55+
default: {}
56+
outputs:
57+
- default: ''
58+
lineno: 6
5459
description: load a toy dataset from scikit-learn
5560
build:
56-
functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlciBvbiAyMDIwLTA1LTAyIDE4OjMzCgoKaW1wb3J0IG51bXB5IGFzIG5wCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5leGVjdXRpb24gaW1wb3J0IE1MQ2xpZW50Q3R4CgoKZGVmIGxvYWRfZGF0YXNldCgKICAgICAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgICAgICBkYXRhc2V0OiBzdHIsCiAgICAgICAgbmFtZTogc3RyID0gJycsCiAgICAgICAgZmlsZV9leHQ6IHN0ciA9ICdwYXJxdWV0JywKICAgICAgICBwYXJhbXM6IGRpY3QgPSB7fQopIC0+IE5vbmU6CiAgICAiIiJMb2FkcyBhIHNjaWtpdC1sZWFybiB0b3kgZGF0YXNldCBmb3IgY2xhc3NpZmljYXRpb24gb3IgcmVncmVzc2lvbgoKICAgIFRoZSBmb2xsb3dpbmcgZGF0YXNldHMgYXJlIGF2YWlsYWJsZSAoJ25hbWUnIDogZGVzcmlwdGlvbik6CgogICAgICAgICdib3N0b24nICAgICAgICAgIDogYm9zdG9uIGhvdXNlLXByaWNlcyBkYXRhc2V0IChyZWdyZXNzaW9uKQogICAgICAgICdpcmlzJyAgICAgICAgICAgIDogaXJpcyBkYXRhc2V0IChjbGFzc2lmaWNhdGlvbikKICAgICAgICAnZGlhYmV0ZXMnICAgICAgICA6IGRpYWJldGVzIGRhdGFzZXQgKHJlZ3Jlc3Npb24pCiAgICAgICAgJ2RpZ2l0cycgICAgICAgICAgOiBkaWdpdHMgZGF0YXNldCAoY2xhc3NpZmljYXRpb24pCiAgICAgICAgJ2xpbm5lcnVkJyAgICAgICAgOiBsaW5uZXJ1ZCBkYXRhc2V0IChtdWx0aXZhcmlhdGUgcmVncmVzc2lvbikKICAgICAgICAnd2luZScgICAgICAgICAgICA6IHdpbmUgZGF0YXNldCAoY2xhc3NpZmljYXRpb24pCiAgICAgICAgJ2JyZWFzdF9jYW5jZXInICAgOiBicmVhc3QgY2FuY2VyIHdpc2NvbnNpbiBkYXRhc2V0IChjbGFzc2lmaWNhdGlvbikKCiAgICBUaGUgc2Npa2l0LWxlYXJuIGZ1bmN0aW9ucyByZXR1cm4gYSBkYXRhIGJ1bmNoIGluY2x1ZGluZyB0aGUgZm9sbG93aW5nIGl0ZW1zOgogICAgLSBkYXRhICAgICAgICAgICAgICB0aGUgZmVhdHVyZXMgbWF0cml4CiAgICAtIHRhcmdldCAgICAgICAgICAgIHRoZSBncm91bmQgdHJ1dGggbGFiZWxzCiAgICAtIERFU0NSICAgICAgICAgICAgIGEgZGVzY3JpcHRpb24gb2YgdGhlIGRhdGFzZXQKICAgIC0gZmVhdHVyZV9uYW1lcyAgICAgaGVhZGVyIGZvciBkYXRhCgogICAgVGhlIGZlYXR1cmVzIChhbmQgdGhlaXIgbmFtZXMpIGFyZSBzdG9yZWQgd2l0aCB0aGUgdGFyZ2V0IGxhYmVscyBpbiBhIERhdGFGcmFtZS4KCiAgICBGb3IgZnVydGhlciBkZXRhaWxzIHNlZSBodHRwczovL3NjaWtpdC1sZWFybi5vcmcvc3RhYmxlL2RhdGFzZXRzL2luZGV4Lmh0bWwjdG95LWRhdGFzZXRzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgIGZ1bmN0aW9uIGV4ZWN1dGlvbiBjb250ZXh0CiAgICA6cGFyYW0gZGF0YXNldDogICAgbmFtZSBvZiB0aGUgZGF0YXNldCB0byBsb2FkCiAgICA6cGFyYW0gbmFtZTogICAgICAgYXJ0aWZhY3QgbmFtZSAoZGVmYXVsdHMgdG8gZGF0YXNldCkKICAgIDpwYXJhbSBmaWxlX2V4dDogICBvdXRwdXQgZmlsZV9leHQ6IHBhcnF1ZXQgb3IgY3N2CiAgICA6cGFyYW0gcGFyYW1zOiAgICAgcGFyYW1zIG9mIHRoZSBza2xlYXJuIGxvYWRfZGF0YSBtZXRob2QKICAgICIiIgogICAgZGF0YXNldCA9IHN0cihkYXRhc2V0KQogICAgcGtnX21vZHVsZSA9ICdza2xlYXJuLmRhdGFzZXRzJwogICAgZm5hbWUgPSBmJ2xvYWRfe2RhdGFzZXR9JwoKICAgIHBrZ19tb2R1bGUgPSBfX2ltcG9ydF9fKHBrZ19tb2R1bGUsIGZyb21saXN0PVtmbmFtZV0pCiAgICBsb2FkX2RhdGFfZm4gPSBnZXRhdHRyKHBrZ19tb2R1bGUsIGZuYW1lKQoKICAgIGRhdGEgPSBsb2FkX2RhdGFfZm4oKipwYXJhbXMpCiAgICBmZWF0dXJlX25hbWVzID0gZGF0YVsnZmVhdHVyZV9uYW1lcyddCgogICAgeHkgPSBucC5jb25jYXRlbmF0ZShbZGF0YVsnZGF0YSddLCBkYXRhWyd0YXJnZXQnXS5yZXNoYXBlKC0xLCAxKV0sIGF4aXM9MSkKICAgIGlmIGhhc2F0dHIoZmVhdHVyZV9uYW1lcywgJ2FwcGVuZCcpOgogICAgICAgIGZlYXR1cmVfbmFtZXMuYXBwZW5kKCdsYWJlbHMnKQogICAgZWxzZToKICAgICAgICBmZWF0dXJlX25hbWVzID0gbnAuYXBwZW5kKGZlYXR1cmVfbmFtZXMsICdsYWJlbHMnKQogICAgZGYgPSBwZC5EYXRhRnJhbWUoZGF0YT14eSwgY29sdW1ucz1mZWF0dXJlX25hbWVzKQoKICAgIGNvbnRleHQubG9nX2RhdGFzZXQobmFtZSBvciBkYXRhc2V0LCBkZj1kZiwgZm9ybWF0PWZpbGVfZXh0LCBpbmRleD1GYWxzZSkKCg==
61+
functionSourceCode: aW1wb3J0IG51bXB5IGFzIG5wCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5leGVjdXRpb24gaW1wb3J0IE1MQ2xpZW50Q3R4CgoKZGVmIGxvYWRfZGF0YXNldCgKICAgIGNvbnRleHQ6IE1MQ2xpZW50Q3R4LAogICAgZGF0YXNldDogc3RyLAogICAgbmFtZTogc3RyID0gIiIsCiAgICBmaWxlX2V4dDogc3RyID0gInBhcnF1ZXQiLAogICAgcGFyYW1zOiBkaWN0ID0ge30sCikgLT4gTm9uZToKICAgICIiIkxvYWRzIGEgc2Npa2l0LWxlYXJuIHRveSBkYXRhc2V0IGZvciBjbGFzc2lmaWNhdGlvbiBvciByZWdyZXNzaW9uCgogICAgVGhlIGZvbGxvd2luZyBkYXRhc2V0cyBhcmUgYXZhaWxhYmxlICgnbmFtZScgOiBkZXNyaXB0aW9uKToKCiAgICAgICAgJ2Jvc3RvbicgICAgICAgICAgOiBib3N0b24gaG91c2UtcHJpY2VzIGRhdGFzZXQgKHJlZ3Jlc3Npb24pCiAgICAgICAgJ2lyaXMnICAgICAgICAgICAgOiBpcmlzIGRhdGFzZXQgKGNsYXNzaWZpY2F0aW9uKQogICAgICAgICdkaWFiZXRlcycgICAgICAgIDogZGlhYmV0ZXMgZGF0YXNldCAocmVncmVzc2lvbikKICAgICAgICAnZGlnaXRzJyAgICAgICAgICA6IGRpZ2l0cyBkYXRhc2V0IChjbGFzc2lmaWNhdGlvbikKICAgICAgICAnbGlubmVydWQnICAgICAgICA6IGxpbm5lcnVkIGRhdGFzZXQgKG11bHRpdmFyaWF0ZSByZWdyZXNzaW9uKQogICAgICAgICd3aW5lJyAgICAgICAgICAgIDogd2luZSBkYXRhc2V0IChjbGFzc2lmaWNhdGlvbikKICAgICAgICAnYnJlYXN0X2NhbmNlcicgICA6IGJyZWFzdCBjYW5jZXIgd2lzY29uc2luIGRhdGFzZXQgKGNsYXNzaWZpY2F0aW9uKQoKICAgIFRoZSBzY2lraXQtbGVhcm4gZnVuY3Rpb25zIHJldHVybiBhIGRhdGEgYnVuY2ggaW5jbHVkaW5nIHRoZSBmb2xsb3dpbmcgaXRlbXM6CiAgICAtIGRhdGEgICAgICAgICAgICAgIHRoZSBmZWF0dXJlcyBtYXRyaXgKICAgIC0gdGFyZ2V0ICAgICAgICAgICAgdGhlIGdyb3VuZCB0cnV0aCBsYWJlbHMKICAgIC0gREVTQ1IgICAgICAgICAgICAgYSBkZXNjcmlwdGlvbiBvZiB0aGUgZGF0YXNldAogICAgLSBmZWF0dXJlX25hbWVzICAgICBoZWFkZXIgZm9yIGRhdGEKCiAgICBUaGUgZmVhdHVyZXMgKGFuZCB0aGVpciBuYW1lcykgYXJlIHN0b3JlZCB3aXRoIHRoZSB0YXJnZXQgbGFiZWxzIGluIGEgRGF0YUZyYW1lLgoKICAgIEZvciBmdXJ0aGVyIGRldGFpbHMgc2VlIGh0dHBzOi8vc2Npa2l0LWxlYXJuLm9yZy9zdGFibGUvZGF0YXNldHMvaW5kZXguaHRtbCN0b3ktZGF0YXNldHMKCiAgICA6cGFyYW0gY29udGV4dDogICAgZnVuY3Rpb24gZXhlY3V0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBkYXRhc2V0OiAgICBuYW1lIG9mIHRoZSBkYXRhc2V0IHRvIGxvYWQKICAgIDpwYXJhbSBuYW1lOiAgICAgICBhcnRpZmFjdCBuYW1lIChkZWZhdWx0cyB0byBkYXRhc2V0KQogICAgOnBhcmFtIGZpbGVfZXh0OiAgIG91dHB1dCBmaWxlX2V4dDogcGFycXVldCBvciBjc3YKICAgIDpwYXJhbSBwYXJhbXM6ICAgICBwYXJhbXMgb2YgdGhlIHNrbGVhcm4gbG9hZF9kYXRhIG1ldGhvZAogICAgIiIiCiAgICBkYXRhc2V0ID0gc3RyKGRhdGFzZXQpCiAgICBwa2dfbW9kdWxlID0gInNrbGVhcm4uZGF0YXNldHMiCiAgICBmbmFtZSA9IGYibG9hZF97ZGF0YXNldH0iCgogICAgcGtnX21vZHVsZSA9IF9faW1wb3J0X18ocGtnX21vZHVsZSwgZnJvbWxpc3Q9W2ZuYW1lXSkKICAgIGxvYWRfZGF0YV9mbiA9IGdldGF0dHIocGtnX21vZHVsZSwgZm5hbWUpCgogICAgZGF0YSA9IGxvYWRfZGF0YV9mbigqKnBhcmFtcykKICAgIGZlYXR1cmVfbmFtZXMgPSBkYXRhWyJmZWF0dXJlX25hbWVzIl0KCiAgICB4eSA9IG5wLmNvbmNhdGVuYXRlKFtkYXRhWyJkYXRhIl0sIGRhdGFbInRhcmdldCJdLnJlc2hhcGUoLTEsIDEpXSwgYXhpcz0xKQogICAgaWYgaGFzYXR0cihmZWF0dXJlX25hbWVzLCAiYXBwZW5kIik6CiAgICAgICAgZmVhdHVyZV9uYW1lcy5hcHBlbmQoImxhYmVscyIpCiAgICBlbHNlOgogICAgICAgIGZlYXR1cmVfbmFtZXMgPSBucC5hcHBlbmQoZmVhdHVyZV9uYW1lcywgImxhYmVscyIpCiAgICBkZiA9IHBkLkRhdGFGcmFtZShkYXRhPXh5LCBjb2x1bW5zPWZlYXR1cmVfbmFtZXMpCgogICAgY29udGV4dC5sb2dfZGF0YXNldChuYW1lIG9yIGRhdGFzZXQsIGRmPWRmLCBmb3JtYXQ9ZmlsZV9leHQsIGluZGV4PUZhbHNlKQo=
5762
commands: []
58-
code_origin: https://github.com/mlrun/functions.git#e16b9e189c60ffa7ed79aeb5a9757b2847f66536:load_dataset.ipynb
63+
code_origin: https://github.com/Michaelliv/functions.git#3ccccbd68b8fe2e4501c7a4debd733be15aafd8e:/home/michaell/projects/functions/load_dataset/load_dataset.py
64+
verbose: false

load_dataset/item.yaml

+2-2
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ categories:
33
- data-source
44
- ml
55
description: load a toy dataset from scikit-learn
6-
doc: ''
6+
doc: README.md
77
example: load_dataset.ipynb
88
generationDate: 2021-05-19:23-13
99
icon: ''
@@ -16,7 +16,7 @@ mlrunVersion: ''
1616
name: load-dataset
1717
platformVersion: ''
1818
spec:
19-
filename: ''
19+
filename: load_dataset.py
2020
handler: load_dataset
2121
image: mlrun/ml-models
2222
kind: job

load_dataset/load_dataset.ipynb

+46-208
Original file line numberDiff line numberDiff line change
@@ -1,124 +1,19 @@
11
{
22
"cells": [
33
{
4-
"cell_type": "code",
5-
"execution_count": null,
6-
"metadata": {},
7-
"outputs": [],
8-
"source": [
9-
"# nuclio: ignore\n",
10-
"import nuclio"
11-
]
12-
},
13-
{
14-
"cell_type": "code",
15-
"execution_count": null,
16-
"metadata": {},
17-
"outputs": [],
18-
"source": [
19-
"%nuclio config kind = \"job\"\n",
20-
"%nuclio config spec.image = \"mlrun/ml-models\""
21-
]
22-
},
23-
{
24-
"cell_type": "code",
25-
"execution_count": null,
26-
"metadata": {},
27-
"outputs": [],
28-
"source": [
29-
"# Copyright 2018 Iguazio\n",
30-
"#\n",
31-
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
32-
"# you may not use this file except in compliance with the License.\n",
33-
"# You may obtain a copy of the License at\n",
34-
"#\n",
35-
"# http://www.apache.org/licenses/LICENSE-2.0\n",
36-
"#\n",
37-
"# Unless required by applicable law or agreed to in writing, software\n",
38-
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
39-
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
40-
"# See the License for the specific language governing permissions and\n",
41-
"# limitations under the License.\n",
42-
"\n",
43-
"import numpy as np\n",
44-
"import pandas as pd\n",
45-
"from mlrun.execution import MLClientCtx\n",
46-
"\n",
47-
"\n",
48-
"def load_dataset(\n",
49-
" context: MLClientCtx,\n",
50-
" dataset: str,\n",
51-
" name: str = '',\n",
52-
" file_ext: str = 'parquet',\n",
53-
" params: dict = {}\n",
54-
") -> None:\n",
55-
" \"\"\"Loads a scikit-learn toy dataset for classification or regression\n",
56-
"\n",
57-
" The following datasets are available ('name' : desription):\n",
58-
"\n",
59-
" 'boston' : boston house-prices dataset (regression)\n",
60-
" 'iris' : iris dataset (classification)\n",
61-
" 'diabetes' : diabetes dataset (regression)\n",
62-
" 'digits' : digits dataset (classification)\n",
63-
" 'linnerud' : linnerud dataset (multivariate regression)\n",
64-
" 'wine' : wine dataset (classification)\n",
65-
" 'breast_cancer' : breast cancer wisconsin dataset (classification)\n",
66-
"\n",
67-
" The scikit-learn functions return a data bunch including the following items:\n",
68-
" - data the features matrix\n",
69-
" - target the ground truth labels\n",
70-
" - DESCR a description of the dataset\n",
71-
" - feature_names header for data\n",
72-
"\n",
73-
" The features (and their names) are stored with the target labels in a DataFrame.\n",
74-
"\n",
75-
" For further details see https://scikit-learn.org/stable/datasets/index.html#toy-datasets\n",
76-
"\n",
77-
" :param context: function execution context\n",
78-
" :param dataset: name of the dataset to load\n",
79-
" :param name: artifact name (defaults to dataset)\n",
80-
" :param file_ext: output file_ext: parquet or csv\n",
81-
" :param params: params of the sklearn load_data method\n",
82-
" \"\"\"\n",
83-
" dataset = str(dataset)\n",
84-
" # reach into module and import the appropriate load_xxx function\n",
85-
" pkg_module = 'sklearn.datasets'\n",
86-
" fname = f'load_{dataset}'\n",
87-
"\n",
88-
" pkg_module = __import__(pkg_module, fromlist=[fname])\n",
89-
" load_data_fn = getattr(pkg_module, fname)\n",
90-
"\n",
91-
" data = load_data_fn(**params)\n",
92-
" feature_names = data['feature_names']\n",
93-
"\n",
94-
" # create the toy dataset\n",
95-
" xy = np.concatenate([data['data'], data['target'].reshape(-1, 1)], axis=1)\n",
96-
" if hasattr(feature_names, 'append'):\n",
97-
" # its a list\n",
98-
" feature_names.append('labels')\n",
99-
" else:\n",
100-
" # its an array\n",
101-
" feature_names = np.append(feature_names, 'labels')\n",
102-
" df = pd.DataFrame(data=xy, columns=feature_names)\n",
103-
"\n",
104-
" # log and upload the dataset\n",
105-
" context.log_dataset(name or dataset, df=df, format=file_ext, index=False)"
106-
]
107-
},
108-
{
109-
"cell_type": "code",
110-
"execution_count": null,
111-
"metadata": {},
112-
"outputs": [],
4+
"cell_type": "markdown",
1135
"source": [
114-
"# nuclio: end-code"
115-
]
6+
"# Load Dataset"
7+
],
8+
"metadata": {
9+
"collapsed": false
10+
}
11611
},
11712
{
11813
"cell_type": "markdown",
11914
"metadata": {},
12015
"source": [
121-
"### mlconfig"
16+
"## Configuration"
12217
]
12318
},
12419
{
@@ -127,137 +22,80 @@
12722
"metadata": {},
12823
"outputs": [],
12924
"source": [
130-
"from mlrun import mlconf\n",
13125
"import os\n",
13226
"\n",
27+
"from mlrun import mlconf\n",
28+
"\n",
13329
"mlconf.dbpath = mlconf.dbpath or 'http://mlrun-api:8080'\n",
134-
"mlconf.artifact_path = mlconf.artifact_path or f'{os.environ[\"HOME\"]}/artifacts'"
30+
"mlconf.artifact_path = mlconf.artifact_path or f'{os.environ[\"HOME\"]}/artifacts'\n"
13531
]
13632
},
13733
{
13834
"cell_type": "markdown",
139-
"metadata": {},
14035
"source": [
141-
"### save"
142-
]
36+
"## Run Locally"
37+
],
38+
"metadata": {
39+
"collapsed": false
40+
}
14341
},
14442
{
14543
"cell_type": "code",
14644
"execution_count": null,
147-
"metadata": {},
14845
"outputs": [],
14946
"source": [
150-
"from mlrun import code_to_function \n",
151-
"# create job function object from notebook code\n",
152-
"fn = code_to_function(\"load_dataset\")\n",
47+
"from mlrun import run_local\n",
48+
"from load_dataset import load_dataset\n",
15349
"\n",
154-
"# add metadata (for templates and reuse)\n",
155-
"fn.spec.default_handler = \"load_dataset\"\n",
156-
"fn.spec.description = \"load a toy dataset from scikit-learn\"\n",
157-
"fn.metadata.categories = [\"data-source\", \"ml\"]\n",
158-
"fn.metadata.labels = {\"author\": \"yjb\", \"framework\": \"sklearn\"}\n",
159-
"fn.export(\"function.yaml\")"
160-
]
50+
"for dataset in [\"wine\", \"iris\", \"breast_cancer\"]:\n",
51+
" run_local(\n",
52+
" handler=load_dataset,\n",
53+
" inputs={\"dataset\": dataset},\n",
54+
" artifact_path=mlconf.artifact_path\n",
55+
" )"
56+
],
57+
"metadata": {
58+
"collapsed": false,
59+
"pycharm": {
60+
"name": "#%%\n"
61+
}
62+
}
16163
},
16264
{
16365
"cell_type": "markdown",
16466
"metadata": {},
16567
"source": [
166-
"## tests"
68+
"## Run remotely\n"
16769
]
16870
},
16971
{
17072
"cell_type": "code",
17173
"execution_count": null,
172-
"metadata": {},
17374
"outputs": [],
17475
"source": [
175-
"# load function from marketplacen\n",
17676
"from mlrun import import_function\n",
77+
"from mlrun import NewTask\n",
17778
"\n",
178-
"# vcs_branch = 'development'\n",
179-
"# base_vcs = f'https://raw.githubusercontent.com/mlrun/functions/{vcs_branch}/'\n",
180-
"# mlconf.hub_url = mlconf.hub_url or base_vcs + f'{name}/function.yaml'\n",
181-
"# fn = import_function(\"hub://load_dataset\")"
182-
]
183-
},
184-
{
185-
"cell_type": "code",
186-
"execution_count": null,
187-
"metadata": {},
188-
"outputs": [],
189-
"source": [
190-
"if \"V3IO_HOME\" in list(os.environ):\n",
79+
"fn = import_function(\"hub://load_dataset\")\n",
80+
"\n",
81+
"if \"V3IO_HOME\" in os.environ:\n",
19182
" from mlrun import mount_v3io\n",
19283
" fn.apply(mount_v3io())\n",
19384
"else:\n",
19485
" # is you set up mlrun using the instructions at https://github.com/mlrun/mlrun/blob/master/hack/local/README.md\n",
19586
" from mlrun.platforms import mount_pvc\n",
196-
" fn.apply(mount_pvc('nfsvol', 'nfsvol', '/home/joyan/data'))"
197-
]
198-
},
199-
{
200-
"cell_type": "code",
201-
"execution_count": null,
202-
"metadata": {},
203-
"outputs": [],
204-
"source": [
205-
"from mlrun import NewTask \n",
87+
" fn.apply(mount_pvc('nfsvol', 'nfsvol', '/home/joyan/data'))\n",
88+
"\n",
89+
"task_params = {\"name\": \"tasks load toy dataset\", \"params\": {\"dataset\": \"wine\"}}\n",
20690
"\n",
207-
"task_params = {\n",
208-
" \"name\" : \"tasks load toy dataset\", \n",
209-
" \"params\" : {\"dataset\" : \"wine\"}}"
210-
]
211-
},
212-
{
213-
"cell_type": "markdown",
214-
"metadata": {},
215-
"source": [
216-
"### run remotely"
217-
]
218-
},
219-
{
220-
"cell_type": "code",
221-
"execution_count": null,
222-
"metadata": {},
223-
"outputs": [],
224-
"source": [
22591
"run = fn.run(NewTask(**task_params), artifact_path=mlconf.artifact_path)"
226-
]
227-
},
228-
{
229-
"cell_type": "markdown",
230-
"metadata": {},
231-
"source": [
232-
"### or locally"
233-
]
234-
},
235-
{
236-
"cell_type": "code",
237-
"execution_count": null,
238-
"metadata": {},
239-
"outputs": [],
240-
"source": [
241-
"from mlrun import run_local"
242-
]
243-
},
244-
{
245-
"cell_type": "code",
246-
"execution_count": null,
247-
"metadata": {},
248-
"outputs": [],
249-
"source": [
250-
"for dataset in [\"wine\", \"iris\", \"breast_cancer\"]:\n",
251-
" run_local(handler=load_dataset,\n",
252-
" inputs={\"dataset\": dataset}, artifact_path=mlconf.artifact_path)"
253-
]
254-
},
255-
{
256-
"cell_type": "code",
257-
"execution_count": null,
258-
"metadata": {},
259-
"outputs": [],
260-
"source": []
92+
],
93+
"metadata": {
94+
"collapsed": false,
95+
"pycharm": {
96+
"name": "#%%\n"
97+
}
98+
}
26199
}
262100
],
263101
"metadata": {
@@ -281,4 +119,4 @@
281119
},
282120
"nbformat": 4,
283121
"nbformat_minor": 4
284-
}
122+
}

0 commit comments

Comments
 (0)