forked from brain-bzh/efficient-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTP1.py
175 lines (143 loc) · 4.86 KB
/
TP1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Data
print("==> Preparing data..")
from minicifar import minicifar_train, minicifar_test, train_sampler, valid_sampler
from torch.utils.data.dataloader import DataLoader
trainloader = DataLoader(minicifar_train, batch_size=800, sampler=train_sampler)
validloader = DataLoader(minicifar_train, batch_size=800, sampler=valid_sampler)
testloader = DataLoader(minicifar_test, batch_size=800)
import torchvision
import torchvision.transforms as transforms
transform_train = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
transform_test = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
"""Train CIFAR10 with PyTorch."""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import os
import argparse
import matplotlib.pyplot as plt
from models import *
from utils import progress_bar
parser = argparse.ArgumentParser(description="PyTorch CIFAR10 Training")
parser.add_argument("--lr", default=0.03, type=float, help="learning rate")
parser.add_argument("--resume", "-r", action="store_true", help="resume from checkpoint")
parser.add_argument("--nepochs", "-n", default=100, type=int, help="number of epochs")
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
loss_train = []
loss_test = []
# n_epochs = 50
n_epochs = args.nepochs
# Model
print("==> Building model..")
net = VGG("VGG11")
net = net.to(device)
if device == "cuda":
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print("==> Resuming from checkpoint..")
assert os.path.isdir("checkpoint"), "Error: no checkpoint directory found!"
checkpoint = torch.load("./checkpoint/ckpt.pth")
net.load_state_dict(checkpoint["net"])
best_acc = checkpoint["acc"]
start_epoch = checkpoint["epoch"]
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.5, weight_decay=5e-4)
#! momentum=0.9, weight_decay=5e-4
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
# Training
def train(epoch):
global loss_train
print("\nEpoch: %d" % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(
batch_idx,
len(trainloader),
"Loss: %.3f | Acc: %.3f%% (%d/%d)"
% (train_loss / (batch_idx + 1), 100.0 * correct / total, correct, total),
)
loss_train.append(train_loss)
def test(epoch):
global best_acc
global loss_test
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(
batch_idx,
len(testloader),
"Loss: %.3f | Acc: %.3f%% (%d/%d)"
% (test_loss / (batch_idx + 1), 100.0 * correct / total, correct, total),
)
loss_test.append(test_loss)
# Save checkpoint.
acc = 100.0 * correct / total
if acc > best_acc:
print("Saving..")
state = {
"net": net.state_dict(),
"acc": acc,
"epoch": epoch,
}
if not os.path.isdir("checkpoint"):
os.mkdir("checkpoint")
torch.save(state, "./checkpoint/ckpt.pth")
best_acc = acc
for epoch in range(start_epoch, start_epoch + n_epochs):
train(epoch)
test(epoch)
scheduler.step()
# plt.plot(x, y)
fig1 = plt.figure()
plt.plot(range(n_epochs), loss_train)
plt.plot(range(n_epochs), loss_test)
plt.legend(["Train", "Validation"], prop={"size": 10})
plt.title("Loss Function", size=10)
plt.xlabel("Epoch", size=10)
plt.ylabel("Loss", size=10)
plt.ylim(ymax=20, ymin=0)
# plt.show()
fig1.tight_layout()
fig1.savefig("TP1_report/figure1.png")