forked from brain-bzh/efficient-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTP4.py
209 lines (172 loc) · 5.87 KB
/
TP4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
@Name :TP4.py
@Description :
@Time :2022/02/23 13:50:20
@Author :Zijie NING
@Version :1.0
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import os
import argparse
import matplotlib.pyplot as plt
from models import *
from utils import progress_bar, EarlyStopping
import torchvision
import torchvision.transforms as transforms
import random
# Prepare Cifar10
print("==> Preparing data..")
transform_train = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
transform_test = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
trainset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=200, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
classes = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck")
"""Train CIFAR10 with PyTorch."""
parser = argparse.ArgumentParser(description="PyTorch CIFAR10 Training")
parser.add_argument("--lr", default=1e-3, type=float, help="learning rate")
parser.add_argument("--resume", "-r", action="store_true", help="resume from checkpoint")
parser.add_argument("--nepochs", "-n", default=300, type=int, help="number of epochs")
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
loss_train = []
loss_test = []
# n_epochs = 50
n_epochs = args.nepochs
# Model
print("==> Building model..")
model = densenet_cifar()
# early stop
print("INFO: Initializing early stopping")
early_stopping = EarlyStopping(patience=200)
model = model.to(device)
if device == "cuda":
model = torch.nn.DataParallel(model)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print("==> Resuming from checkpoint..")
assert os.path.isdir("checkpoint"), "Error: no checkpoint directory found!"
checkpoint = torch.load("./checkpoint/mixup_CIFAR10.pth")
model.load_state_dict(checkpoint["model"])
best_acc = checkpoint["acc"]
start_epoch = checkpoint["epoch"]
early_stopping.best_acc = best_acc
print(f"best_acc:", best_acc)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=5e-4)
# Training
def train(epoch):
global loss_train
print("\nEpoch: %d" % epoch)
model.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (x, y) in enumerate(trainloader):
# generate mixup data
batch_size = x.size()[0]
index = torch.randperm(batch_size).cuda()
# index = torch.randperm(batch_size)
lam = random.random()
x_m = lam * x + (1 - lam) * x[index, :]
y1, y2 = y, y[index]
x_m, y1, y2 = x_m.to(device), y1.to(device), y2.to(device)
optimizer.zero_grad()
out_m = model(x_m)
loss = lam * criterion(out_m, y1) + (1 - lam) * criterion(out_m, y2)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = out_m.max(1)
total += y.size(0)
correct += (
lam * predicted.eq(y1.data).cpu().sum().float() + (1 - lam) * predicted.eq(y2.data).cpu().sum().float()
)
progress_bar(
batch_idx,
len(trainloader),
"Loss: %.3f | Acc: %.3f%% (%d/%d)"
% (train_loss / (batch_idx + 1), 100.0 * correct / total, correct, total),
)
loss_train.append(train_loss)
def test(epoch):
global best_acc
global loss_test
model.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(
batch_idx,
len(testloader),
"Loss: %.3f | Acc: %.3f%% (%d/%d)"
% (test_loss / (batch_idx + 1), 100.0 * correct / total, correct, total),
)
loss_test.append(test_loss)
acc = 100.0 * correct / total
early_stopping(acc)
# Save checkpoint.
if acc > best_acc:
print("Saving..")
state = {
"model": model.state_dict(),
"acc": acc,
"epoch": epoch,
"loss": test_loss,
}
if not os.path.isdir("checkpoint"):
os.mkdir("checkpoint")
torch.save(state, "./checkpoint/mixup_CIFAR10.pth")
best_acc = acc
epoch_index = 0
while epoch_index <= n_epochs:
train(start_epoch + epoch_index)
test(start_epoch + epoch_index)
epoch_index += 1
if early_stopping.early_stop:
break
# plt.plot(x, y)
fig1 = plt.figure()
plt.plot(range(epoch_index), loss_train)
plt.plot(range(epoch_index), loss_test)
plt.legend(["Train", "Validation"], prop={"size": 10})
plt.title("Loss Function", size=10)
plt.xlabel("Epoch", size=10)
plt.ylabel("Loss", size=10)
plt.ylim(ymin=0)
# plt.show()
fig1.tight_layout()
# path = "TP4_report/mixup_CIFAR10.png"
path = "TP4_report/figure1.png"
if os.path.isfile(path):
os.remove(path)
fig1.savefig(path)