forked from ashutosh1206/Crypton
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
84 lines (72 loc) · 2.02 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python2.7
from Crypto.Util.number import bytes_to_long, inverse, long_to_bytes
from Crypto.Random.random import randint
class PublicKey:
def __init__(self, h, p, g, q):
self.h = h
self.p = p
self.g = g
self.q = q
class PrivateKey:
def __init__(self, x, p, g, q):
self.x = x
self.p = p
self.g = g
self.q = q
def _generate_key():
"""
Generate private-public key pair.
For security reasons, either p should be a safe prime or g should have a
prime subgroup order. Otherwise it is vulnerable to Short Subgroup Attack.
:Parameters: _None_
:Variables:
g : int/long
Base point for modular exponentiation.
p : int/long
Modulus for modular exponentiation. Should be a safe prime.
x : int/long
Receiver's private key, should be kept secret.
h : int/long
Receiver's public key
q : int/long
Order of group generated by p and equals p-1
:Return: A tuple containing a Public Key object (class `PublicKey`) and
a Private Key object (class `PrivateKey`)
"""
# Assigning the largest 1024-bit safe prime as p
p = (1 << 1024) - 1093337
x = randint(2, p-2)
g = 7
q = p - 1
h = pow(g, x, p)
pubkey = PublicKey(h, p, g, q)
privkey = PrivateKey(x, p, g, q)
return (pubkey, privkey)
def _derive_key(pubkey, x):
"""
Derive shared secret from the public key of the sender and private key of the
user.
:parameters:
pubkey : object of class `PublicKey`
x : secret key of the user
Returns the derived shared key
"""
p = pubkey.p
g = pubkey.g
h = pubkey.h
q = pubkey.q
# h = g^x_alice % p
# _key = h^x_bob % p = g^(x_alice*x_bob) % p
_key = pow(h, x, p)
return _key
if __name__ == "__main__":
try:
for i in range(100):
pubkey, privkey = _generate_key()
p = pubkey.p
g = pubkey.g
x = privkey.x
y = randint(2, p-2)
assert pow(g, x*y, p) == _derive_key(pubkey, y)
except:
print "[-] Something's wrong in your code! Check the implementation"