-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathapp.py
196 lines (161 loc) · 6.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import glob
import streamlit as st
import wget
from PIL import Image
import torch
import cv2
import os
import time
st.set_page_config(layout="wide")
cfg_model_path = 'models/yolov5s.pt'
model = None
confidence = .25
def image_input(data_src):
img_file = None
if data_src == 'Sample data':
# get all sample images
img_path = glob.glob('data/sample_images/*')
img_slider = st.slider("Select a test image.", min_value=1, max_value=len(img_path), step=1)
img_file = img_path[img_slider - 1]
else:
img_bytes = st.sidebar.file_uploader("Upload an image", type=['png', 'jpeg', 'jpg'])
if img_bytes:
img_file = "data/uploaded_data/upload." + img_bytes.name.split('.')[-1]
Image.open(img_bytes).save(img_file)
if img_file:
col1, col2 = st.columns(2)
with col1:
st.image(img_file, caption="Selected Image")
with col2:
img = infer_image(img_file)
st.image(img, caption="Model prediction")
def video_input(data_src):
vid_file = None
if data_src == 'Sample data':
vid_file = "data/sample_videos/sample.mp4"
else:
vid_bytes = st.sidebar.file_uploader("Upload a video", type=['mp4', 'mpv', 'avi'])
if vid_bytes:
vid_file = "data/uploaded_data/upload." + vid_bytes.name.split('.')[-1]
with open(vid_file, 'wb') as out:
out.write(vid_bytes.read())
if vid_file:
cap = cv2.VideoCapture(vid_file)
custom_size = st.sidebar.checkbox("Custom frame size")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if custom_size:
width = st.sidebar.number_input("Width", min_value=120, step=20, value=width)
height = st.sidebar.number_input("Height", min_value=120, step=20, value=height)
fps = 0
st1, st2, st3 = st.columns(3)
with st1:
st.markdown("## Height")
st1_text = st.markdown(f"{height}")
with st2:
st.markdown("## Width")
st2_text = st.markdown(f"{width}")
with st3:
st.markdown("## FPS")
st3_text = st.markdown(f"{fps}")
st.markdown("---")
output = st.empty()
prev_time = 0
curr_time = 0
while True:
ret, frame = cap.read()
if not ret:
st.write("Can't read frame, stream ended? Exiting ....")
break
frame = cv2.resize(frame, (width, height))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
output_img = infer_image(frame)
output.image(output_img)
curr_time = time.time()
fps = 1 / (curr_time - prev_time)
prev_time = curr_time
st1_text.markdown(f"**{height}**")
st2_text.markdown(f"**{width}**")
st3_text.markdown(f"**{fps:.2f}**")
cap.release()
def infer_image(img, size=None):
model.conf = confidence
result = model(img, size=size) if size else model(img)
result.render()
image = Image.fromarray(result.ims[0])
return image
@st.experimental_singleton
def load_model(path, device):
model_ = torch.hub.load('ultralytics/yolov5', 'custom', path=path, force_reload=True)
model_.to(device)
print("model to ", device)
return model_
@st.experimental_singleton
def download_model(url):
model_file = wget.download(url, out="models")
return model_file
def get_user_model():
model_src = st.sidebar.radio("Model source", ["file upload", "url"])
model_file = None
if model_src == "file upload":
model_bytes = st.sidebar.file_uploader("Upload a model file", type=['pt'])
if model_bytes:
model_file = "models/uploaded_" + model_bytes.name
with open(model_file, 'wb') as out:
out.write(model_bytes.read())
else:
url = st.sidebar.text_input("model url")
if url:
model_file_ = download_model(url)
if model_file_.split(".")[-1] == "pt":
model_file = model_file_
return model_file
def main():
# global variables
global model, confidence, cfg_model_path
st.title("Object Recognition Dashboard")
st.sidebar.title("Settings")
# upload model
model_src = st.sidebar.radio("Select yolov5 weight file", ["Use our demo model 5s", "Use your own model"])
# URL, upload file (max 200 mb)
if model_src == "Use your own model":
user_model_path = get_user_model()
if user_model_path:
cfg_model_path = user_model_path
st.sidebar.text(cfg_model_path.split("/")[-1])
st.sidebar.markdown("---")
# check if model file is available
if not os.path.isfile(cfg_model_path):
st.warning("Model file not available!!!, please added to the model folder.", icon="⚠️")
else:
# device options
if torch.cuda.is_available():
device_option = st.sidebar.radio("Select Device", ['cpu', 'cuda'], disabled=False, index=0)
else:
device_option = st.sidebar.radio("Select Device", ['cpu', 'cuda'], disabled=True, index=0)
# load model
model = load_model(cfg_model_path, device_option)
# confidence slider
confidence = st.sidebar.slider('Confidence', min_value=0.1, max_value=1.0, value=.45)
# custom classes
if st.sidebar.checkbox("Custom Classes"):
model_names = list(model.names.values())
assigned_class = st.sidebar.multiselect("Select Classes", model_names, default=[model_names[0]])
classes = [model_names.index(name) for name in assigned_class]
model.classes = classes
else:
model.classes = list(model.names.keys())
st.sidebar.markdown("---")
# input options
input_option = st.sidebar.radio("Select input type: ", ['image', 'video'])
# input src option
data_src = st.sidebar.radio("Select input source: ", ['Sample data', 'Upload your own data'])
if input_option == 'image':
image_input(data_src)
else:
video_input(data_src)
if __name__ == "__main__":
try:
main()
except SystemExit:
pass