-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNat.agda
77 lines (59 loc) · 1.62 KB
/
Nat.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
open import Agda.Builtin.Bool
data Nat : Set where
zero : Nat
suc : Nat → Nat
_+_ : Nat → Nat → Nat
zero + y = y
(suc x) + y = suc (x + y)
_-_ : Nat → Nat → Nat
zero - y = zero
x - zero = x
(suc x) - (suc y) = x - y
-- left is the entirety of left-side argument to _-_
-- (suc (suc zero)) - (suc (suc zero))
-- (suc zero) - (suc zero)
-- zero - zero
-- zero
{-# BUILTIN NATURAL Nat #-}
not : Bool → Bool
not false = true
not true = false
data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A
infixr 5 _::_
-- exercise 1.4 page 8
length : {A : Set} → List A → Nat
length [] = zero
length (x :: y) = suc (length y)
_++_ : {A : Set} → List A → List A → List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
infixr 5 _++_
map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x :: xs) = f x :: map f xs
data _×_ (A B : Set) : Set where
_,_ : A → B → A × B
infixr 4 _,_
fst : {A B : Set} → A × B → A
fst (x , y) = x
snd : {A B : Set} → A × B → B
snd (x , y) = y
-- Page 11
-- Exercise 2.1. Implement the function
-- downFrom : (n : Nat) → Vec Nat n that,
-- given a number n, produces the vector
-- (n − 1) :: (n − 2) :: . . . :: 0. (You’ll
-- need to copy the definition of the Vec
-- type below to test if your definition
-- typechecks.)
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_:::_ : {n : Nat} → A → Vec A n → Vec A (suc n)
infixr 5 _:::_
downFrom : (n : Nat) → Vec Nat n
downFrom zero = []
downFrom (suc x) = x ::: downFrom x
head : {A : Set}{n : Nat} → Vec A (suc n) → A
head (x ::: xs) = x