-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathiter.mbt
970 lines (917 loc) · 23.3 KB
/
iter.mbt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
// Copyright 2025 International Digital Economy Academy
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///|
// Types
type Iter[T] ((T) -> IterResult) -> IterResult
///|
//TODO: Add intrinsic for Iter::run
pub fn Iter::run[T](self : Iter[T], f : (T) -> IterResult) -> IterResult {
(self._)(f)
}
///|
pub fn Iter::just_run[T](self : Iter[T], f : (T) -> IterResult) -> Unit {
(self._)(f) |> ignore
}
///|
pub(all) enum IterResult {
IterEnd // false
IterContinue // true
} derive(Eq)
///|
pub impl[T : Show] Show for Iter[T] with output(self, logger) {
logger.write_iter(self)
}
// Consumers
///|
/// Iterates over each element in the iterator, applying the function `f` to each element.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// - `self`: The iterator to consume.
/// - `f`: A function that takes an element of type `T` and returns `Unit`. This function is applied to each element of the iterator.
/// TODO: change the intrinsic to match the function name
#intrinsic("%iter.iter")
pub fn Iter::each[T](self : Iter[T], f : (T) -> Unit) -> Unit {
for a in self {
f(a)
}
}
///|
pub fn Iter::any[T](self : Iter[T], f : (T) -> Bool) -> Bool {
self.run(fn(k) { if f(k) { IterEnd } else { IterContinue } }) != IterContinue
}
///|
pub fn Iter::all[T](self : Iter[T], f : (T) -> Bool) -> Bool {
self.run(fn(k) { if not(f(k)) { IterEnd } else { IterContinue } }) ==
IterContinue
}
///|
/// Iterates over each element in the iterator, applying the function `f` to each element with index.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// - `self`: The iterator to consume.
/// - `f`: A function that takes an index of type `Int` and an element of type `T` and returns `Unit`. This function is applied to each element of the iterator.
/// TODO: Add intrinsic
pub fn Iter::eachi[T](self : Iter[T], f : (Int, T) -> Unit) -> Unit {
let mut i = 0
for a in self {
f(i, a)
i += 1
}
}
///|
/// Folds the elements of the iterator using the given function, starting with the given initial value.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
/// - `B`: The type of the accumulator value.
///
/// # Arguments
///
/// - `self`: The iterator to consume.
/// - `f`: A function that takes an accumulator of type `B` and an element of type `T`, and returns a new accumulator value.
/// - `init`: The initial value for the fold operation.
///
/// # Returns
///
/// Returns the final accumulator value after folding all elements of the iterator.
#intrinsic("%iter.reduce")
pub fn Iter::fold[T, B](self : Iter[T], init~ : B, f : (B, T) -> B) -> B {
let mut acc = init
for a in self {
acc = f(acc, a)
}
acc
}
///|
/// Counts the number of elements in the iterator.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// - `self`: The iterator to consume.
///
/// # Returns
///
/// Returns the number of elements in the iterator.
pub fn Iter::count[T](self : Iter[T]) -> Int {
self.fold(fn { acc, _ => acc + 1 }, init=0)
}
// Producers
///|
/// Do not use this method, it is for internal use only.
pub fn Iter::new[T](f : ((T) -> IterResult) -> IterResult) -> Iter[T] {
Iter(f)
}
///|
/// Creates an empty iterator.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Returns
///
/// Returns an empty iterator of type `Iter[T]`.
pub fn Iter::empty[T]() -> Iter[T] {
fn { _ => IterContinue }
}
///|
/// Creates an iterator that contains a single element.
///
/// # Type Parameters
///
/// - `T`: The type of the element in the iterator.
///
/// # Arguments
///
/// - `a`: The single element to be contained in the iterator.
///
/// # Returns
///
/// Returns an iterator of type `Iter[T]` that contains the single element `a`.
pub fn Iter::singleton[T](a : T) -> Iter[T] {
fn { yield_ => yield_(a) }
}
///|
/// Creates an iterator that repeats the given element indefinitely.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// - `a`: The element to be repeated.
///
/// # Returns
///
/// Returns an iterator of type `Iter[T]` that repeats the element `a` indefinitely.
#intrinsic("%iter.repeat")
pub fn Iter::repeat[T](a : T) -> Iter[T] {
fn(yield_) {
loop yield_(a) {
IterContinue => continue yield_(a)
IterEnd => IterEnd
}
}
}
///|
/// Creates an iterator that iterates over a range of Int with default step 1.
/// To grow the range downward, set the `step` parameter to a negative value.
///
/// # Arguments
///
/// * `start` - The starting value of the range (inclusive).
/// * `end` - The ending value of the range (exclusive by default).
/// * `step` - The step size of the range (default 1).
/// * `inclusive` - Whether the ending value is inclusive (default false).
///
/// # Returns
///
/// Returns an iterator that iterates over the range of Int from `start` to `end - 1`.
pub fn Int::until(
self : Int,
end : Int,
step~ : Int = 1,
inclusive~ : Bool = false
) -> Iter[Int] {
if step == 0 {
return Iter::empty()
}
fn(yield_) {
let mut i = self
while (step > 0 && i < end) ||
(step < 0 && i > end) ||
(inclusive && i == end) {
if yield_(i) == IterEnd {
break IterEnd
}
let next = i + step
if (step > 0 && next >= i) || (step < 0 && next <= i) {
i = next
} else {
break IterContinue
}
} else {
IterContinue
}
}
}
///|
/// Creates an iterator that iterates over a range of Int64 with default step 1L.
/// To grow the range downward, set the `step` parameter to a negative value.
///
/// # Arguments
///
/// * `start` - The starting value of the range (inclusive).
/// * `end` - The ending value of the range (exclusive by default).
/// * `step` - The step size of the range (default 1L).
/// * `inclusive` - Whether the ending value is inclusive (default false).
///
/// # Returns
///
/// Returns an iterator that iterates over the range of Int64 from `start` to `end - 1`.
pub fn Int64::until(
self : Int64,
end : Int64,
step~ : Int64 = 1L,
inclusive~ : Bool = false
) -> Iter[Int64] {
if step == 0 {
return Iter::empty()
}
fn(yield_) {
let mut i = self
while (step > 0 && i < end) ||
(step < 0 && i > end) ||
(inclusive && i == end) {
if yield_(i) == IterEnd {
break IterEnd
}
let next = i + step
if (step > 0 && next >= i) || (step < 0 && next <= i) {
i = next
} else {
break IterContinue
}
} else {
IterContinue
}
}
}
///|
/// Creates an iterator that iterates over a range of Float with default step 1.0 .
/// To grow the range downward, set the `step` parameter to a negative value.
///
/// # Arguments
///
/// * `start` - The starting value of the range (inclusive).
/// * `end` - The ending value of the range (exclusive by default).
/// * `step` - The step size of the range (default 1.0).
/// * `inclusive` - Whether the ending value is inclusive (default false).
///
/// # Returns
///
/// Returns an iterator that iterates over the range of Float from `start` to `end - 1`.
pub fn Float::until(
self : Float,
end : Float,
step~ : Float = 1.0,
inclusive~ : Bool = false
) -> Iter[Float] {
if step == 0.0 {
return Iter::empty()
}
fn(yield_) {
let mut i = self
while (step > 0.0 && i < end) ||
(step < 0.0 && i > end) ||
(inclusive && i == end) {
if yield_(i) == IterEnd {
break IterEnd
}
let next = i + step
if (step > 0.0 && next >= i) || (step < 0.0 && next <= i) {
i = next
} else {
break IterContinue
}
} else {
IterContinue
}
}
}
///|
/// Creates an iterator that iterates over a range of Double with default step 1.0 .
/// To grow the range downward, set the `step` parameter to a negative value.
///
/// # Arguments
///
/// * `start` - The starting value of the range (inclusive).
/// * `end` - The ending value of the range (exclusive by default).
/// * `step` - The step size of the range (default 1.0).
/// * `inclusive` - Whether the ending value is inclusive (default false).
///
/// # Returns
///
/// Returns an iterator that iterates over the range of Double from `start` to `end - 1`.
pub fn Double::until(
self : Double,
end : Double,
step~ : Double = 1.0,
inclusive~ : Bool = false
) -> Iter[Double] {
if step == 0.0 {
return Iter::empty()
}
fn(yield_) {
let mut i = self
while (step > 0.0 && i < end) ||
(step < 0.0 && i > end) ||
(inclusive && i == end) {
if yield_(i) == IterEnd {
break IterEnd
}
let next = i + step
if (step > 0.0 && next >= i) || (step < 0.0 && next <= i) {
i = next
} else {
break IterContinue
}
} else {
IterContinue
}
}
}
// operators
///|
/// Filters the elements of the iterator based on a predicate function.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `f` - The predicate function that determines whether an element should be included in the filtered iterator.
///
/// # Returns
///
/// A new iterator that only contains the elements for which the predicate function returns `IterContinue`.
#intrinsic("%iter.filter")
pub fn Iter::filter[T](self : Iter[T], f : (T) -> Bool) -> Iter[T] {
fn(yield_) {
self.run(fn { a => if f(a) { yield_(a) } else { IterContinue } })
}
}
///|
/// Transforms the elements of the iterator using a mapping function.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
/// - `R`: The type of the transformed elements.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `f` - The mapping function that transforms each element of the iterator.
///
/// # Returns
///
/// A new iterator that contains the transformed elements.
#intrinsic("%iter.map")
pub fn Iter::map[T, R](self : Iter[T], f : (T) -> R) -> Iter[R] {
fn { yield_ => self.run(fn { a => yield_(f(a)) }) }
}
///|
/// Transforms the elements of the iterator using a mapping function that returns an `Option`.
/// The elements for which the function returns `None` are filtered out.
pub fn Iter::filter_map[A, B](self : Iter[A], f : (A) -> B?) -> Iter[B] {
fn(yield_) {
self.run(fn(a) {
match f(a) {
Some(b) => yield_(b)
None => IterContinue
}
})
}
}
///|
/// Transforms the elements of the iterator using a mapping function that returns an `Option`.
/// The elements for which the function returns `None` are filtered out.
///
#deprecated("Use `Iter::filter_map` instead")
pub fn Iter::map_option[A, B](self : Iter[A], f : (A) -> B?) -> Iter[B] {
self.filter_map(f)
}
///|
/// Transforms each element of the iterator into an iterator and flattens the resulting iterators into a single iterator.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
/// - `R`: The type of the transformed elements.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `f` - The function that transforms each element of the iterator into an iterator.
///
/// # Returns
///
/// A new iterator that contains the flattened elements.
#intrinsic("%iter.flat_map")
pub fn Iter::flat_map[T, R](self : Iter[T], f : (T) -> Iter[R]) -> Iter[R] {
fn { yield_ => self.run(fn { x => f(x).run(yield_) }) }
}
///|
/// iter.map(f).flatten() == iter..flat_map(f)
/// ```moonbit
/// test {
/// fn f(n : Int) { Int::until(0,n) }
/// let xs = f(10)
/// assert_eq!(xs.map(f).flatten().to_array(),xs.flat_map(f).to_array())
/// }
/// ```
pub fn Iter::flatten[T](self : Iter[Iter[T]]) -> Iter[T] {
fn { yield_ => self.run(fn { x => x.run(yield_) }) }
}
///|
/// Applies a function to each element of the iterator without modifying the iterator.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `f` - The function to apply to each element of the iterator.
///
/// # Returns
///
/// The same iterator.
pub fn Iter::tap[T](self : Iter[T], f : (T) -> Unit) -> Iter[T] {
self.map(fn {
a => {
f(a)
a
}
})
}
///|
/// Takes the first `n` elements from the iterator.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `n` - The number of elements to take.
///
/// # Returns
///
/// A new iterator that contains the first `n` elements.
#intrinsic("%iter.take")
pub fn Iter::take[T](self : Iter[T], n : Int) -> Iter[T] {
// [..take(10,seq), next] would continue
// even if seq has less than 10 elements
// but `for x in [..take(10,seq), next ] { break }` would stop
//
fn(yield_) {
let mut i = 0
let mut r = IterContinue
self.just_run(fn {
a =>
if i < n {
if yield_(a) == IterContinue {
i = i + 1
IterContinue
} else {
r = IterEnd
IterEnd
}
} else {
IterEnd
}
})
r
}
}
///|
/// Takes elements from the iterator as long as the predicate function returns `true`.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `f` - The predicate function that determines whether an element should be taken.
///
/// # Returns
///
/// A new iterator that contains the elements as long as the predicate function returns `true`.
pub fn Iter::take_while[T](self : Iter[T], f : (T) -> Bool) -> Iter[T] {
fn(yield_) {
// `r` represents the overall return value.
// It is set to `IterEnd` only if `yield_(a)` returns `IterEnd`.
// so if `f(a)` returns `false`, it will return `IterEnd`
// immediately the iteration of current seq is terminated
// but [.. take_while(..), next] would continue
// See test "take_while2"
let mut r : IterResult = IterContinue
self.just_run(fn(a) {
if f(a) {
if yield_(a) == IterContinue {
IterContinue
} else {
r = IterEnd
IterEnd
}
} else {
IterEnd
}
})
r
}
}
///|
/// Transforms the elements of the iterator using a mapping function upto the function returns `None`.
pub fn Iter::map_while[A, B](self : Iter[A], f : (A) -> B?) -> Iter[B] {
fn(yield_) {
let mut r : IterResult = IterContinue
self.just_run(fn(a) {
match f(a) {
Some(b) =>
if yield_(b) == IterContinue {
IterContinue
} else {
r = IterEnd
IterEnd
}
None => IterEnd
}
})
r
}
}
///|
/// Skips the first `n` elements from the iterator.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `n` - The number of elements to skip.
///
/// # Returns
///
/// A new iterator that starts after skipping the first `n` elements.
pub fn Iter::drop[T](self : Iter[T], n : Int) -> Iter[T] {
fn(yield_) {
let mut i = 0
self.run(fn(a) {
if i < n {
i = i + 1
IterContinue
} else {
yield_(a)
}
})
}
}
///|
/// Skips elements from the iterator as long as the predicate function returns `true`.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `f` - The predicate function that determines whether an element should be skipped.
///
/// # Returns
///
/// A new iterator that starts after skipping the elements as long as the predicate function returns `true`.
pub fn Iter::drop_while[T](self : Iter[T], f : (T) -> Bool) -> Iter[T] {
fn(yield_) {
let mut dropping = true
self.run(fn(a) {
if dropping && f(a) {
IterContinue
} else {
dropping = false
yield_(a)
}
})
}
}
///|
/// Finds the first element in the iterator that satisfies the predicate function.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `f` - The predicate function that determines whether an element is the first element to be found.
///
/// # Returns
///
/// An `Option` that contains the first element that satisfies the predicate function, or `None` if no such element is found.
pub fn Iter::find_first[T](self : Iter[T], f : (T) -> Bool) -> T? {
for a in self {
if f(a) {
break Some(a)
}
} else {
None
}
}
///|
pub fn Iter::peek[T](self : Iter[T]) -> T? {
let mut first = None
self.just_run(fn(a) {
first = Some(a)
IterEnd
})
first
}
///|
/// Prepends a single element to the beginning of the iterator.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `a` - The element to be prepended to the iterator.
///
/// # Returns
///
/// Returns a new iterator with the element `a` prepended to the original iterator.
pub fn Iter::prepend[T](self : Iter[T], a : T) -> Iter[T] {
fn(yield_) {
if yield_(a) == IterContinue {
self.run(yield_)
} else {
IterEnd
}
}
}
///|
/// Appends a single element to the end of the iterator.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterator.
///
/// # Arguments
///
/// * `self` - The input iterator.
/// * `a` - The element to be appended to the iterator.
///
/// # Returns
///
/// Returns a new iterator with the element `a` appended to the original iterator.
pub fn Iter::append[T](self : Iter[T], a : T) -> Iter[T] {
fn(yield_) {
if self.run(yield_) == IterContinue {
yield_(a)
} else {
IterEnd
}
}
}
///|
/// Combines two iterators into one by appending the elements of the second iterator to the first.
///
/// # Type Parameters
///
/// - `T`: The type of the elements in the iterators.
///
/// # Arguments
///
/// * `self` - The first input iterator.
/// * `other` - The second input iterator to be appended to the first.
///
/// # Returns
///
/// Returns a new iterator that contains the elements of `self` followed by the elements of `other`.
#intrinsic("%iter.concat")
pub fn Iter::concat[T](self : Iter[T], other : Iter[T]) -> Iter[T] {
fn(yield_) {
if self.run(yield_) == IterContinue {
other.run(yield_)
} else {
IterEnd
}
}
}
///|
pub impl[T] Add for Iter[T] with op_add(self, other) {
Iter::concat(self, other)
}
///|
/// Collects the elements of the iterator into an array.
pub fn Iter::to_array[T](self : Iter[T]) -> Array[T] {
let result = []
for e in self {
result.push(e)
}
result
}
///|
/// Collects the elements of the iterator into an array.
pub fn Iter::collect[T](self : Iter[T]) -> Array[T] {
let result = []
self.each(fn(e) { result.push(e) })
result
}
///|
/// Collects the elements of the iterator into a string.
pub fn Iter::join(self : Iter[String], sep : String) -> String {
let buf = StringBuilder::new()
let mut first = true
for str in self {
if first {
first = false
} else {
buf.write_string(sep)
}
buf.write_string(str)
}
buf.to_string()
}
///|
/// Iter itself is an iterator.
/// so that it works with array spread operator. e.g, `[..iter]`
pub fn Iter::iter[T](self : Iter[T]) -> Iter[T] {
self
}
///|
/// Returns the last element of the iterator, or `None` if the iterator is empty.
pub fn Iter::last[A](self : Iter[A]) -> A? {
fn f(_a : A?, b : A) {
Some(b)
}
self.fold(init=None, f)
}
///|
/// Returns the first element of the iterator, or `None` if the iterator is empty.
///
/// # Type Parameters
///
/// - `A` : The type of the elements in the iterator.
///
/// # Parameters
///
/// - `self` : The iterator to retrieve the first element from.
///
/// # Returns
///
/// - An `Option` containing the first element of the iterator if it exists, otherwise `None`.
///
/// # Examples
///
/// ```
/// let iter = Iter::singleton(42)
/// assert_eq!(iter.head(), Some(42))
/// ```
pub fn Iter::head[A](self : Iter[A]) -> A? {
for i in self {
break Some(i)
} else {
None
}
}
///|
/// Inserts a separator element `sep` between each element of the iterator.
///
/// # Parameters
///
/// - `self` : The iterator to intersperse the separator into.
/// - `sep` : The separator element to insert between each element of the iterator.
///
/// # Examples
///
/// ```
/// let arr = []
/// [1, 2, 3].iter().intersperse(0).each(fn(i) {arr.push(i)})
/// assert_eq!(arr, [1, 0, 2, 0, 3])
/// ```
pub fn Iter::intersperse[A](self : Iter[A], sep : A) -> Iter[A] {
fn(yield_) {
let mut first = true
self.run(fn(x) {
if first {
first = false
yield_(x)
} else if yield_(sep) == IterEnd {
IterEnd
} else {
yield_(x)
}
})
}
}
///|
pub fn Iter::op_as_view[A](
self : Iter[A],
start~ : Int = 0,
end? : Int
) -> Iter[A] {
// Note here we mark `end` as an optional parameter
// since the meaningful default value of `end` is the length of the iterator
// this is time consuming to calculate
// while `None` is more appropriate.
// In general, when to use `end = expr` and when to use `end?` is a design decision.
// when `expr` is always needed when user does not specify, the former is
// slightly more efficient. When `expr` is not always needed, the latter is more appropriate.
match end {
Some(end) => self.drop(start).take(end - start)
None => self.drop(start)
}
}
///|
/// Checks if the iterator contains an element equal to the given value.
///
/// Parameters:
///
/// * `self` : The iterator to search in.
/// * `value` : The value to search for.
///
/// Returns `true` if the iterator contains an element equal to the given value,
/// `false` otherwise.
///
/// Example:
///
/// ```moonbit
/// test "Iter::contains" {
/// let iter = [1, 2, 3, 4, 5].iter()
/// inspect!(iter.contains(3), content="true")
/// inspect!(iter.contains(6), content="false")
/// }
///
/// test "Iter::contains/empty" {
/// let iter = Iter::empty()
/// inspect!(iter.contains(1), content="false")
/// }
/// ```
pub fn Iter::contains[A : Eq](self : Iter[A], value : A) -> Bool {
for v in self {
if v == value {
break true
}
} else {
false
}
}
///|
/// Returns the nth element of the iterator, or `None` if the iterator is
/// shorter than `n` elements.
pub fn Iter::nth[T](self : Iter[T], n : Int) -> T? {
self.drop(n).head()
}
///|
pub fn Iter::maximum[T : Compare](self : Iter[T]) -> T? {
let mut res = None
for x in self {
match res {
None => res = Some(x)
Some(max) => if x > max { res = Some(x) }
}
}
res
}
///|
pub fn Iter::minimum[T : Compare](self : Iter[T]) -> T? {
let mut res = None
for x in self {
match res {
None => res = Some(x)
Some(min) => if x < min { res = Some(x) }
}
}
res
}