-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEdge Detection.py
199 lines (158 loc) · 7.08 KB
/
Edge Detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from multiprocessing.pool import ThreadPool
from PIL import Image as Im
import threading as thr
import tkinter as tk
import os
root = tk.Tk()
root.withdraw()
## For 'askopenfilename'
def remove_extension(filepath):
None
def find_edges(original, threshold = 50, noise = 0, mode = "grad_black",
name = "edges.png"):
"""
original : str : filepath to original image
threshold : int : minimum delta requirement for pixel to be considered
an 'edge'
noise : int : maximum delta require for pixel to be considered an
'edge' ; essentially removes low valued edges
mode : str : determines the method of displaying edges. Can be
'on_white' , 'overlay' , 'grad_black'
name : str : optional name and folder directory (note: directory
must exist)
"""
orig = Im.open(original)
orig_data = orig.load()
if mode == "grad_black":
image = Im.new("RGB", (orig.width, orig.height), (0, 0, 0))
elif mode == "on_white":
image = Im.new("RGB", (orig.width, orig.height), (255, 255, 255))
elif mode == "overlay":
image = Im.open(original)
data = image.load()
bot_1 = ThreadPool(1)
bot_2 = ThreadPool(1)
bot_3 = ThreadPool(1)
bot_4 = ThreadPool(1)
bounds_1 = [0, image.width // 4]
bounds_2 = [image.width // 4, 2 * image.width // 4]
bounds_3 = [2 * image.width // 4, int(3/2 * image.width // 4)]
bounds_4 = [int(3/2 * image.width // 4), image.width - 1]
ret_1 = bot_1.apply_async(compare_pixels, args = [image, orig, \
bounds_1, \
[0, image.height - 1], threshold, noise]).get()
ret_2 = bot_2.apply_async(compare_pixels, args = [image, orig, \
bounds_2, \
[0, image.height - 1], threshold, noise]).get()
ret_3 = bot_3.apply_async(compare_pixels, args = [image, orig, \
bounds_3, \
[0, image.height - 1], threshold, noise]).get()
ret_4 = bot_4.apply_async(compare_pixels, args = [image, orig, \
bounds_4, \
[0, image.height - 1], threshold, noise]).get()
image.paste(ret_1, (bounds_1[0], 0))
image.paste(ret_2, (bounds_2[0], 0))
image.paste(ret_3, (bounds_3[0], 0))
image.paste(ret_4, (bounds_4[0], 0))
original = os.path.abspath(original)
name = original[::-1][original[::-1].find("\\"):][::-1] + name
image.save(name)
def compare_pixels(image, original, x_range, y_range, threshold, noise):
"""
image : Image : equal to image
original : Image : equal to orig
x_range : list : len 2 list of min and max range of x values
y_range : list : len 2 list of min and max range of y values
threshold : int : minimum delta requirement for pixel to be considered
an 'edge'
noise : int : maximum delta require for pixel to be considered an
'edge' ; essentially removes low valued edges
"""
data = image.load()
orig_data = original.load()
for x in range(x_range[0], x_range[1]):
for y in range(y_range[0], y_range[1]):
delta = abs(sum(orig_data[x + 1, y]) - sum(orig_data[x, y]))
if delta > threshold:
delta = 255 if delta > 255 else delta
data[x, y] = (delta, delta, delta)
for x in range(x_range[0], x_range[1]):
for y in range(y_range[0], y_range[1]):
delta = abs(sum(orig_data[x, y + 1]) - sum(orig_data[x, y]))
if delta > threshold:
delta = 255 if delta > 255 else delta
data[x, y] = (delta, delta, delta)
## Mutates object directly...
image = image.crop([x_range[0], y_range[0], x_range[1], y_range[1] + 1])
return image
def remove_noise(filepath, threshold = 10):
""" Will attempt to remove the 'noise' from an image"""
## input an "edge" image and remove artifacts caused by jpeg format
image = Im.open(filepath)
data = image.load()
for x in range(image.width):
for y in range(image.height):
if data[x, y][0] < threshold:
data[x, y] = (0, 0, 0)
image.save(image.filename)
return data
def find_importance(original, threshold = 50, noise = 0, grid_size = 100,
grid_sens = 3000):
"""
Attempts to display only the important sections of an image
original : str : filepath to original image
threshold : int : minimum delta requirement for pixel to be considered
an 'edge'
noise : int : maximum delta require for pixel to be considered an
'edge' ; essentially removes low valued edges
grid_size : int : fraction of the total length/width which is considered
part of one grid space (ex. grid_size = 100 cuts the image
into 100 x 100 grid)
grid_sens : int : the threshold for which a grid space must exceed to be
considered important
"""
orig_image = Im.open(original)
create_edges = False
if os.path.exists("edges.png"):
image = Im.open("edges.png")
if not (image.width == orig_image.width and \
image.height == orig_image.height):
create_edges = True
if create_edges:
print("Finding edges...")
find_edges(original, threshold, noise, "grad_black", "edges.png")
image = Im.open("edges.png")
importance = Im.new("RGB", (image.width, image.height))
data = image.load()
orig_data = orig_image.load()
importance_data = importance.load()
grid_space = [[0 for l in range(grid_size)] for w in range(grid_size)]
print("Finding grid deltas...")
for x in range(image.width - 1):
for y in range(image.height - 1):
x_value = x // (image.width // grid_size + 1)
y_value = y // (image.height // grid_size + 1)
#print(x_value, y_value)
grid_space[x_value][y_value] += data[x,y][0]
print("Applying grid deltas...")
for x in range(image.width - 1):
for y in range(image.height - 1):
x_value = x // (image.width // grid_size + 1)
y_value = y // (image.height // grid_size + 1)
try:
if grid_space[x_value][y_value] > grid_sens:
importance_data[x,y] = orig_data[x,y]
elif grid_space[x_value-1][y_value] > grid_sens and \
grid_space[x_value+1][y_value] > grid_sens and \
grid_space[x_value][y_value-1] > grid_sens and \
grid_space[x_value][y_value+1] > grid_sens:
## Fill in grid_space if all spaces around are filled
importance_data[x,y] = orig_data[x,y]
except IndexError:
##x_value-1, +1, etc. out of bounds
None
importance.save("importance.png")
return grid_space
def get_file():
path = tk.filedialog.askopenfilename()
return path