This repository was archived by the owner on Mar 23, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensenet.py
309 lines (270 loc) · 12.5 KB
/
densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from collections import OrderedDict
from typing import Any, List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import Tensor
def fn_binary_search_connections(start,end,list_keys): ### 384- 20/12 512- 22/14 640- 23.9/15
if end-start>0:
mid=int((start+end)/2)
if start!=end:
if mid-start>2:
list_keys[mid].append(start+1)
if end-mid>2:
list_keys[end].append(mid+1)
fn_binary_search_connections(start+1,mid-1,list_keys)
fn_binary_search_connections(mid+1,end-1,list_keys)
def gen_list(gen_num_dense=12):
list_keys=[]
for i in range(gen_num_dense): # note: [[]]*gen_num_dense will not work correctly
list_keys.append([])
return list_keys
class _DenseLayer(nn.Module):
def __init__(
self, block_number: int, layer_number: int, process_node: bool, initiai_feature_size: int, num_input_features: int, growth_rate: int, bn_size: int, drop_rate: float, memory_efficient: bool = False, binary_search_connections: bool = False,
) -> None:
super().__init__()
self.block_number = block_number
self.layer_number = layer_number
self.process_node = process_node
self.binary_search_connections = binary_search_connections
self.initial_feature_size = initiai_feature_size
self.num_input_features = num_input_features
if self.process_node:
self.norm1 = nn.BatchNorm2d(self.initial_feature_size)
self.conv1 = nn.Conv2d(self.initial_feature_size, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
else:
self.norm1 = nn.BatchNorm2d(self.num_input_features)
self.conv1 = nn.Conv2d(self.num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
self.relu1 = nn.ReLU(inplace=True)
self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
self.drop_rate = float(drop_rate)
self.memory_efficient = memory_efficient
def bn_function(self, inputs: List[Tensor]) -> Tensor:
concated_features = torch.cat(inputs, 1)
norm_features = self.norm1(concated_features)
bottleneck_output = self.conv1(self.relu1(norm_features)) # noqa: T484
return bottleneck_output
# todo: rewrite when torchscript supports any
def any_requires_grad(self, input: List[Tensor]) -> bool:
for tensor in input:
if tensor.requires_grad:
return True
return False
@torch.jit.unused # noqa: T484
def call_checkpoint_bottleneck(self, input: List[Tensor]) -> Tensor:
def closure(*inputs):
return self.bn_function(inputs)
return cp.checkpoint(closure, *input)
@torch.jit._overload_method # noqa: F811
def forward(self, input: List[Tensor]) -> Tensor: # noqa: F811
pass
@torch.jit._overload_method # noqa: F811
def forward(self, input: Tensor) -> Tensor: # noqa: F811
pass
# torchscript does not yet support *args, so we overload method
# allowing it to take either a List[Tensor] or single Tensor
def forward(self, input: Tensor) -> Tensor: # noqa: F811
if isinstance(input, Tensor):
prev_features = [input]
else:
prev_features = input
if self.memory_efficient and self.any_requires_grad(prev_features):
if torch.jit.is_scripting():
raise Exception("Memory Efficient not supported in JIT")
bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
else:
bottleneck_output = self.bn_function(prev_features)
new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return new_features
class _DenseBlock(nn.ModuleDict):
_version = 2
def __init__(
self,
block_number: int,
num_layers: int,
initial_feature_size_list: list,
num_input_features: int,
bn_size: int,
growth_rate: int,
drop_rate: float,
memory_efficient: bool = False,
binary_search_connections: bool = False,
) -> None:
super().__init__()
self.binary_search_connections = binary_search_connections
self.block_number = block_number
self.num_layers = num_layers
process_node = False
if self.binary_search_connections:
self.list_keys = gen_list(self.num_layers)
fn_binary_search_connections(0,self.num_layers-1,self.list_keys)
concat_index = -1
for i in range(num_layers):
if self.binary_search_connections:
if self.list_keys[i]!=[]:
process_node = True
concat_index += 1
initial_feature_size = initial_feature_size_list[concat_index]
elif concat_index >=0:
process_node = True
concat_index += 1
initial_feature_size = initial_feature_size_list[concat_index]
else:
process_node = False
initial_feature_size = -1
else:
process_node = False
initial_feature_size = -1
layer = _DenseLayer(
block_number = block_number,
layer_number = i,
process_node = process_node,
initiai_feature_size= initial_feature_size,
num_input_features=num_input_features + i * growth_rate,
growth_rate=growth_rate,
bn_size=bn_size,
drop_rate=drop_rate,
memory_efficient=memory_efficient,
binary_search_connections=self.binary_search_connections
)
self.add_module("denselayer%d" % (i + 1), layer)
def forward(self, init_features: Tensor) -> Tensor: # 256, 512, 1024, 1024
features = [init_features]
stored_features = [init_features]
if self.binary_search_connections:
counter = -1 # for destination
for name, layer in self.items():
counter = counter + 1
new_features = layer(features)
features.append(new_features)
stored_features.append(new_features) # to maintain indexed storage of outputs
if counter < self.num_layers-1 and self.list_keys[counter+1]!=[]: # excluding last output
merge_idx = self.list_keys[counter+1][0]
merge_idx = merge_idx + 1 # we have input at index 0; outputs are stored from index 1.
features.append(stored_features[merge_idx])
# print("combining in: ", dest_idx, " index: ",merge_idx, "for last index: ", self.num_layers-1, len(features))
else:
for name, layer in self.items():
new_features = layer(features)
features.append(new_features)
combined_tensor = torch.cat(features, 1)
return combined_tensor
class _Transition(nn.Sequential):
def __init__(self, num_input_features: int, num_output_features: int) -> None:
super().__init__()
self.norm = nn.BatchNorm2d(num_input_features)
self.relu = nn.ReLU(inplace=True)
self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
class DenseNet(nn.Module):
def __init__(
self,
growth_rate: int = 32,
block_config: Tuple[int, int, int, int] = (6, 12, 24, 16),
num_init_features: int = 64,
bn_size: int = 4,
drop_rate: float = 0,
num_classes: int = 1000,
memory_efficient: bool = False,
binary_search_connections = False,
) -> None:
super().__init__()
map_block_norm = [288, 576, 1216]
map_initial_feature_size_list = [[256],
[320,352,384,416,448,480,544],
[448,480,512,544,576,640,704,736,768,800,832,864,928,960,992,1024,1056,1120,1184,2146],
[736,800,832,864,896,960,992,1024,1088,1152]]
self.binary_search_connections = binary_search_connections
# First convolution
self.features = nn.Sequential(
OrderedDict(
[
("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
("norm0", nn.BatchNorm2d(num_init_features)),
("relu0", nn.ReLU(inplace=True)),
("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
]
)
)
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block_number = i
initial_feature_size_list = map_initial_feature_size_list[block_number]
block = _DenseBlock(
block_number=block_number,
num_layers=num_layers,
initial_feature_size_list = initial_feature_size_list,
num_input_features=num_features,
bn_size=bn_size,
growth_rate=growth_rate,
drop_rate=drop_rate,
memory_efficient=memory_efficient,
binary_search_connections = self.binary_search_connections,
)
self.features.add_module("denseblock%d" % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
if self.binary_search_connections:
transition_channel = map_block_norm[i]
else:
transition_channel = num_features
trans = _Transition(num_input_features=transition_channel, num_output_features=num_features // 2)
self.features.add_module("transition%d" % (i + 1), trans)
num_features = num_features // 2
# Final batch norm
if self.binary_search_connections:
num_features = 1184
self.final_norm = nn.BatchNorm2d(num_features)
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
# Official init from torch repo.
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x: Tensor) -> Tensor:
features = self.features(x)
features = self.final_norm(features)
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool2d(out, (1, 1))
out = torch.flatten(out, 1)
out = self.classifier(out)
return out
def get_n_params(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
def initialise_model(
growth_rate: int,
block_config: Tuple[int, int, int, int],
num_init_features: int,
binary_search_connections: bool,
**kwargs: Any,
) -> DenseNet:
model = DenseNet(growth_rate, block_config, num_init_features,binary_search_connections=binary_search_connections, **kwargs)
print("Total parameters in Densenet 121 when Binary Search Connections is set "+str(binary_search_connections)+": ",get_n_params(model))
return model
def get_BSC_Densenet_121_model(num_class):
BSC_DenseNet_model = initialise_model(32, (6, 12, 24, 16), 64, num_classes=num_class, binary_search_connections=True)
return BSC_DenseNet_model
def get_Densenet_121_model(num_class):
DenseNet_model = initialise_model(32, (6, 12, 24, 16), 64, num_classes=num_class, binary_search_connections=False)
return DenseNet_model
def get_densenet_models(num_class):
# note: Here we are comparing only a single dense block with 7 layers. To establish the effectiveness of BSC-Densenet
# Inorder to use Densenet 121, call:
DenseNet = get_Densenet_121_model(num_class)
BSC_DenseNet = get_BSC_Densenet_121_model(num_class)
return DenseNet, BSC_DenseNet