forked from SMA2017/BasicMachineLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGibbsSamplingGMM.py
140 lines (100 loc) · 3.69 KB
/
GibbsSamplingGMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import invwishart, multivariate_normal
import pdb
class GibbsSamplingGMM:
def __init__(self, iteration):
self.iteration = iteration
# self.k = numberOfModels
def initialization(self,N, K, D):
self.N = N
self.K = K
self.D = D
self.Z = np.zeros((N, K)) # N elements
self.pi = {} # k elements
self.mu = {} # k elements
self.sigma = {} #k elements
self.alpha = tuple(10 for i in range(K))
self.mu0 = np.ones((D,))
self.sigma0 = np.eye(D)
for i in range(K):
self.mu[i] = np.random.multivariate_normal(self.mu0, self.sigma0)
self.sigma[i] = invwishart.rvs(df = D, scale = np.eye(D), size = 1)
self.pi[0] = np.random.dirichlet(self.alpha, 1)#should be alpha1, alpha2, alpha3,..., alphaK
for i in range(N):
self.Z[i] = np.random.multinomial(1, sum(self.pi[0]), size=1) #sum(self.pi[i]) to convert np.array of shape (1,K) to array of length K elements
def sampling(self, N, K, D, data):
self.initialization(N, K, D) #4 : number of data points #2 : number of mixture models #4: dimension vectors
for i in range(self.iteration):
if i%500 == 0:
print(i)
print(self.mu[0])
print(self.mu[1])
print(self.sigma[0])
self.samplingPI()
self.samplingZ(data)
self.samplingMu(data)
self.samplingCovariance(data)
def samplingPI(self):
new_alpha = list(self.alpha)
for i in range(self.K):
Ni = np.sum(self.Z[:, i] == 1)
new_alpha[i] += Ni
tuple_alpha = tuple(new_alpha)
self.pi[0] = np.random.dirichlet(tuple_alpha, 1)
# return 0
def samplingMu(self, data):
for i in range(self.K):
Nk = np.sum(self.Z[:, i] == 1)
same_group_k = data[self.Z[:, i] == 1 , ]
sum_same_group_k = np.sum(same_group_k, axis = 0)
Vk = np.linalg.inv(self.sigma0) + Nk*np.linalg.inv(self.sigma[i])
sigmak = np.linalg.inv(Vk)
mk = sigmak.dot(np.linalg.inv(self.sigma0).dot(self.mu0) + np.linalg.inv(self.sigma[i]).dot(sum_same_group_k))
self.mu[i] = np.random.multivariate_normal(mk, sigmak)
# return 0
def samplingCovariance(self, data):
sum_scale_mat = np.zeros_like(self.sigma0)
for i in range(self.K):
Nk = np.sum(self.Z[:, i] == 1)
same_group_k = data[self.Z[:, i] == 1, ]
broad_cast_diff = same_group_k - self.mu[i]
scale_mat_k = np.transpose(broad_cast_diff).dot(broad_cast_diff)
sum_scale_mat += scale_mat_k
new_DF = self.D + Nk
new_scale_mat = self.sigma0 + sum_scale_mat
self.sigma[i] = invwishart.rvs(df = new_DF, scale = new_scale_mat, size = 1)
# return 0
def samplingZ(self, data):
for i in range(self.N):
numerator = []
denomirator = 0.0
for k in range(self.K):
denomirator += self.pi[0][:, k]*multivariate_normal.pdf(data[i,:], self.mu[k], self.sigma[k])
numerator.append(self.pi[0][:, k]*multivariate_normal.pdf(data[i,:], self.mu[k], self.sigma[k]))
# pdb.set_trace()
out_coefficient = numerator/denomirator
out_coefficient = out_coefficient.reshape(out_coefficient.shape[0]*out_coefficient.shape[1],)
mutinomial_coefficient = tuple(out_coefficient.tolist())
# pdb.set_trace()
self.Z[i] = np.random.multinomial(1, mutinomial_coefficient, size =1)
return 0
def testGibbsSamplingGMM():
N = 200
K = 2
D = 2
mean1 = [1.0, 1.5]
cov1 = [[1, 0], [0, 1]]
X1 = np.random.multivariate_normal(mean1, cov1, 100)
mean2 = [5.5, 4.3]
cov2 = [[1, 0], [0, 1]]
X2 = np.random.multivariate_normal(mean2, cov2, 100)
mixture_gaussian_data = np.concatenate((X1, X2), axis = 0)
gibbsDemo = GibbsSamplingGMM(2000)
# gibbsDemo.sampling()
# print(gibbsDemo.Z)
gibbsDemo.sampling(N,K, D, mixture_gaussian_data)
print(gibbsDemo.mu[0])
print(gibbsDemo.mu[1])
print(gibbsDemo.sigma[0])
testGibbsSamplingGMM()